41,228
次編輯
變更
拉普拉斯变换
,→评价
于是响应的拉普拉斯变换Y(s)就等于激励的拉普拉斯变换X(s)与传递函数H(s)的乘积,即
Y(s)=X(s)H(s)如果定义:f(t)是一个关于t的函数,使得当t<0时候,f(t)=0; 拉普拉斯变换s是一个复变量;mathcal 是一个运算符号,它代表对其对象进行拉普拉斯积分int_0^infty e^,dt;F(s)是f(t)的拉普拉斯变换结果。则f(t),的拉普拉斯变换由下列式子给出:F(s),=mathcal left =int_ ^infty f(t),e^,dt 拉普拉斯逆变换,是已知F(s),求解f(t)的过程。用符号 mathcal ^,表示。 拉普拉斯变换/逆变换拉普拉斯逆变换的公式是:对于所有的t>0,f(t)= mathcal ^ left=frac int_ ^ F(s),e^,dsc,是收敛区间的横坐标值,是一个实常数且大于所有F(s),的个别点的实部值。为简化计算而建立的实变量函数和复变量函数间的一种函数变换。对一个实变量函数作拉普拉斯变换,并在复数域中作各种运算,再将运算结果作拉普拉斯反变换来求得实数域中的相应结果,往往比直接在实数域中求出同样的结果在计算上容易得多。拉普拉斯变换的这种运算步骤对于求解线性微分方程尤为有效,它可把微分方程化为容易求解的代数方程来处理,从而使计算简化。在经典控制理论中,对控制系统的分析和综合,都是建立在拉普拉斯变换的基础上的。引入拉普拉斯变换的一个主要优点,是可采用传递函数代替微分方程来描述系统的特性。这就为采用直观和简便的图解方法来确定控制系统的整个特性(见信号流程图、动态结构图)、分析控制系统的运动过程(见奈奎斯特稳定判据、根轨迹法),以及综合控制系统的校正装置(见控制系统校正方法)提供了可能性。 拉普拉斯变换用 f(t)表示实变量t的一个函数,F(s)表示它的拉普拉斯变换,它是复变量s=σ+j&owega;的一个函数,其中σ和&owega; 均为实变数,j2=-1。F(s)和f(t)间的关系由下面定义的积分所确定:如果对于实部σ >;σc的所有s值上述积分均存在,而对σ ≤σc时积分不存在,便称 σc为f(t)的收敛系数。对给定的实变量函数 f(t),只有当σc为有限值时,其拉普拉斯变换F(s)才存在。习惯上,常称F(s)为f(t)的象函数,记为F(s)=L[f(t)];称f(t)为F(s)的原函数,记为ft=L-1[F(s)]。函数变换对和运算变换性质 利用定义积分,很容易建立起原函数 f(t)和象函数 F(s)间的变换对,以及f(t)在实数域内的运算与F(s)在复数域内的运算间的对应关系。表1和表2分别列出了最常用的一些函数变换对和运算变换性质。拉普拉斯变化的存在性:为使F(s)存在,积分式必须收敛。有如下定理:如因果函数f(t)满足:(1)在有限区间可积,(2)存在σ0使|f(t)|e^(-σt)在t→无穷时的极限为0,则对于所有σ大于σ0,拉普拉斯积分式绝对且一致收敛。编辑本段工程应用应用拉普拉斯变换解常变量齐次微分方程,可以将微分方程化为代数方程,使问题得以解决。在工程学上,拉普拉斯变换的重大意义在于:将一个信号从时域上,转换为复频域(s域)上来表示;在线性系统,控制自动化上都有广泛的应用。<ref>[https://baikebaijiahao.sobaidu.com/doc/5566254-5781363.html s?id=1725070714918782868&wfr=spider&for=pc 拉普拉斯变换]搜狗</ref>
=='''参考文献'''==
[[Category:314 數學分析]]