26,395
次編輯
變更
向量
,無編輯摘要
{| class="wikitable" align="right"
|-
| style="background: #66CCFFFF2400" align= center| '''<big>向量</big> '''
|-
|<center><img src=https://gimg2.baidu.com/image_search/src=http%3A%2F%2Fwww.51wendang.com%2Fpic%2F91f960cb496eee5147032ebb%2F12-810-jpg_6-1080-0-0-1080.jpg&refer=http%3A%2F%2Fwww.51wendang.com&app=2002&size=f9999,10000&q=a80&n=0&g=0n&fmt=auto?sec=1665440350&t=bd72e154e4249ac0d43ce8993c6cf2c3 width="300"></center>|<small>[[Filehttps:|缩略 //image.baidu.com/search/detail?ct=503316480&z=0&ipn=d&word=%E5%90%91%E9%87%8F&step_word=&hs=0&pn=15&spn=0&di=7117150749552803841&pi=0&rn=1&tn=baiduimagedetail&is=0%2C0&istype=0&ie=utf-8&oe=utf-8&in=&cl=2&lm=-1&st=undefined&cs=2346987949%2C2210750245&os=2381108536%2C3268238988&simid=3358454199%2C191700245&adpicid=0&lpn=0&ln=1915&fr=&fmq=1662848373426_R&fm=&ic=undefined&s=undefined&hd=undefined&latest=undefined©right=undefined&se=&sme=&tab=0&width=undefined&height=undefined&face=undefined&ist=&jit=&cg=&bdtype=0&oriquery=&objurl=https%3A%2F%2Fgimg2.baidu.com%2Fimage_search%2Fsrc%3Dhttp%3A%2F%2Fwww.51wendang.com%2Fpic%2F91f960cb496eee5147032ebb%2F12-810-jpg_6-1080-0-0-1080.jpg%26refer%3Dhttp%3A%2F%2Fwww.51wendang.com%26app%3D2002%26size%3Df9999%2C10000%26q%3Da80%26n%3D0%26g%3D0n%26fmt%3Dauto%3Fsec%3D1665440350%26t%3Dbd72e154e4249ac0d43ce8993c6cf2c3&fromurl=ippr_z2C%24qAzdH3FAzdH3Fooo_z%26e3Bc8ojg1wg2_z%26e3Bv54AzdH3F15vAzdH3Fl8ulmavk9lmjjjc890andjkkAzdH3F8d&gsm=10&rpstart=0&rpnum=0&islist=&querylist=&nojc=undefined&dyTabStr=MCwyLDMsNSw0LDYsMSw4LDcsOQ%3D%3D 来自 呢 图|居中|[ 网 原 的 图 链接]片]]</small>
|-
| style="background: #66CCFFFF2400" align= center| '''<big></big>'''
|-
| align= light|
中文名;向量
外文名;vector
|}
在数学中,'''向量'''(也称为欧几里得向量、几何向量、矢量),指具有大小(magnitude)和方向的量。它可以 [[ 形象 ]] 化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。与向量对应的量叫做数量(物理学中称标量),数量(或标量)只有大小,没有方向。
向量的记法:印刷体记作黑体(粗体)的字母(如a、b、u、v),书写时在 [[ 字母 ]] 顶上加一小箭头“→”。
如果给定向量的起点(A)和终点(B),可将向量记作AB(并于顶上加→)。在空间直角坐标系中,也能把向量以数对形式表示,例如xOy平面中(2,3)是一向量。
在物理学和工程学中,几何向量更常被称为矢量。许多物理量都是矢量,比如一个 [[ 物体 ]] 的位移,球撞向墙而对其施加的力等等。与之相对的是标量,即只有大小而没有方向的量。一些与向量有关的定义亦与物理概念有密切的联系,例如向量势对应于物理中的势能。
几何向量的概念在线性代数中经由抽象化,得到更一般的向量概念。此处向量定义为向量空间的 [[ 元素 ]] ,要注意这些抽象意义上的向量不一定以数对表示,大小和方向的概念亦不一定适用。因此,平日阅读时需按照语境来区分文中所说的"向量"是哪一种概念。不过,依然可以找出一个向量空间的基来设置坐标系,也可以透过选取恰当的定义,在向量空间上介定范数和内积,这允许我们把抽象意义上的向量类比为 [[ 具体 ]] 的几何向量。<ref>[ https://wenku.so.com/d/561e9494ecf3070c88d6ef2a8a8e89f3 向量及向量的基本运算], 360文库 , --2018年4月18日</ref>
==发展历史==
向量,最初被应用于物理学。很多物理量如力、速度、位移以及电场强度、磁感应强度等都是向量。大约公元前350年前, [[ 古希腊 ]] 著名学者亚里士多德就知道了力可以表示成向量,两个力的组合作用可用著名的平行四边形法则来得到。“向量”一词来自力学、解析几何中的有向线段。最先使用有向线段表示向量的是英国大科学家牛顿。
从数学发展史来看,历史上很长一段时间,空间的向量结构并未被数学家们所认识,直到19世纪末20世纪初,人们才把空间的性质与向量运算联系起来,使向量成为具有一套优良运算通性的数学体系。
向量能够进入数学并得到发展,首先应从复数的几何表示谈起。18世纪末期,挪威测量学家威塞尔首次利用 [[ 坐标 ]] 平面上的点来表示复数a+bi(a,b为有理数,且不同时等于0),并利用具有几何意义的复数运算来定义向量的运算。把坐标平面上的点用向量表示出来,并把向量的几何表示用于研究几何问题与三角问题。人们逐步接受了复数,也学会了利用复数来表示和研究平面中的向量,向量就这样平静地进入了数学中。
但复数的利用是受限制的,因为它仅能用于表示平面,若有不在同一平面上的力作用于同一 [[ 物体 ]] ,则需要寻找所谓三维“复数”以及相应的运算体系。19世纪中期,爱尔兰数学家哈密尔顿发明了四元数(包括数量部分和向量部分),以代表空间的向量。他的工作为向量代数和向量分析的建立奠定了基础.随后,电磁理论的发现者,英国的数学物理学家麦克斯韦把四元数的数量部分和向量部分分开处理,从而创造了大量的向量分析。
三维向量分析的开创,以及同四元数的正式分裂,是英国的居伯斯和海维塞德于19世纪80年代各自独立完成的。他们提出,一个向量不过是四元数的向量部分,但不独立于任何四元数。他们引进了两种类型的乘法,即数量积和向量积。并把向量代数推广到变向量的向量微积分.从此,向量的方法被引进到分析和解析 [[ 几何 ]] 中来,并逐步完善,成为了一套优良的数学工具。
一般印刷用黑体的小写英文字母(a、b、c等)来表示,手写用在a、b、c等字母上加一箭头(→)表示,如
==几何表示==
向量可以用有向线段来表示。有向线段的长度表示向量的大小,向量的大小,也就是向量的 [[ 长度 ]] 。长度为0的向量叫做零向量,记作长度等于1个单位的向量,叫做单位向量。箭头所指的方向表示向量的方向。
==坐标表示==
的坐标。向量a称为点P的位置向量。
在空间直角坐标系中,分别取与x轴、y轴,z轴方向相同的3个单位向量i,j,k作为一组基底。若为该坐标系内的任意向量,以坐标原点O为起点作向量a。由空间基本定理知,有且只有一组实数(x,y,z),使得a=ix+jy+kz,因此把实数对(x,y,z)叫做向量a的坐标,记作a=(x,y,z)。这就是向量a的 [[ 坐标 ]] 表示。其中(x,y,z),就是点P的坐标。向量a称为点P的位置向量。
当然,对于多维的空间向量,可以通过类推得到,此略。
行列式的值是一个数字,表示向量所在空间的【元素】 大小。
比如,在平面直角坐标系中,整个 [[ 平面 ]] 可以由长宽均为1的方格构成,这个方格的大小为1。这个方格就是平面直角坐标系中的【元素】,大小为1。
平面坐标系中所有的点都可以用
那么,这个新坐标系(2维空间)的【元素】大小为2的长方块。
再比如,我们对平面直角 [[ 坐标 ]] 系变形,用如下两个向量来刻画
那么,这个新坐标系(2维空间)的【元素】大小为2的平行四边形块。
那么可以看出来:在3维空间中,三个3维向量构成的的行列式的值,等同于三个3维向量的【混合积】。
由此,扩展到n维空间。在n维 [[ 空间 ]] 中,n个n维向量构成的行列式的值,表示n维向量所在的n维空间的【元素】 大小。同时,这n个n维向量也叫n维空间的【标度】。
的方向和长度。
1.向量的模是非负实数,向量的模是可以比较大小的。向量 。
2.因为方向不能比较大小,所以向量也就不能比较大小。对于向量来说“大于”和“小于”的概念是没有 [[ 意义 ]] 的。例如
是没有意义的。
==负向量==
如果向量AB与向量CD的模相等且 [[ 方向 ]] 相反,那么我们把向量AB叫做向量CD的负向量,也称为相反向量。
==零向量==
规定:所有的零向量都相等。
当用有向线段表示向量时,起点可以任意选取。任意两个相等的非零向量,都可用同一条有向线段来 [[ 表示 ]] ,并且与有向线段的起点无关.同向且等长的有向线段都表示相同向量。
==自由向量==
==滑动向量==
沿着直线 [[ 作用 ]] 的向量称为滑动向量。
==固定向量==
==方向向量==
直线l上的向量a以及与向量a共线的向量叫做 [[ 直 线l 线]]l 上的方向向量。
==相反向量==
==平行向量==
方向相同或相反的非零向量叫做平行(或共线)向量.向量a、b [[ 平行 ]] (共线),记作a∥b。零向量长度为零,是起点与终点重合的向量,其方向不确定。我们规定:零向量与任一向量平行。平行于同一直线的一组向量是共线向量。
若a=(x,y),b=(m,n),则a//b→a×b=xn-ym=0
==共面向量==
空间中的向量有且只有以下两种位置 [[ 关系 ]] :⑴共面;⑵不共面。
注意:只有三个或三个以上向量才谈共面不共面。
== 参考来源 ==
<center>
{{#iDisplay:m0371fv6gud|480|270|qq}}
<center>“线性代数的本质”系列合集 01-向量究竟是什么?</center>
</center>
== 参考资料 ==