求真百科歡迎當事人提供第一手真實資料,洗刷冤屈,終結網路霸凌。

變更

前往: 導覽搜尋

皮埃尔·德·费马

增加 39 位元組, 6 年前
無編輯摘要
| 知名作品 = 《平面和立体轨迹引论》 <br> 《求最大和最小的方法》 <br> <br>
}}
 
[[ ]]
== 人物简介 ==
<p style=text-indent:2em;>'''<big>皮埃尔·德·费马</big>''' [[ 法国]]律师和业余数学家。
<p style=text-indent:2em;>他在数学上的成就不比职业数学家差,他似乎对数论最有兴趣,亦对现代微积分的建立有所贡献。被誉为“业余数学家之王”。费马,是当今常见译法,80年代的书籍文章也多见译为“费尔玛”的情况,但“费玛”则少见。
<p style=text-indent:2em;>皮耶·德·费马(Pierre de Fermat)是一个17世纪的法国律师,也是一位业余数学家。之所以称业余,是由于皮耶·德·费马具有律师的全职工作。根据法文实际发音并参考英文发音,他的姓氏也常译为"费尔玛"(注意"玛"字)。费马最后定理在中国习惯称为费马大定理,西方数学界原名"最后"的意思是:其它猜想都证实了,这是最后一个。著名的数学史学家贝尔(E. T. Bell)在20世纪初所撰写的著作中,称皮耶·德·费马为"业余数学家之王"。贝尔深信,费马比皮耶·德·费马同时代的大多数专业数学家更有成就。17世纪是杰出数学家活跃的世纪,而贝尔认为费马是17世纪数学家中最多产的明星。
<p style=text-indent:2em;>费马于1636年与当时的大数学家梅森、罗贝瓦尔开始通信,对自己的数学工作略有言及。但是《平面与立体轨迹引论》的出版是在费马去世14年以后的事,因而1679年以前,很少有人了解到费马的工作,而现在看来,费马的工作却是开创性的。
<p style=text-indent:2em;>《平面与立体轨迹引论》中道出了费马的发现。他指出:"两个未知量决定的-个方程式,对应着一条轨迹,可以描绘出一条直线或曲线。"费马的发现比勒奈·笛卡儿发现解析几何的基本原理还早七年。费马在书中还对一般直线和圆的方程、以及关于双曲线、椭圆、抛物线进行了讨论。
<p style=text-indent:2em;>'''<big>对微积分的贡献 </big>'''
<p style=text-indent:2em;>16、17世纪,微积分是继解析几何之后的最璀璨的明珠。人所共知,牛顿和莱布尼茨是微积分的缔造者,并且在其之前,至少有数十位科学家为微积分的发明做了奠基性的工作。但在诸多先驱者当中,费马仍然值得一提。
<p style=text-indent:2em;>曲线的切线问题和函数的极大、极小值问题是微积分的起源之一。这项工作较为古老,最早可追溯到古希腊时期。阿基米德为求出一条曲线所包任意图形的面积,曾借助于穷竭法。由于穷竭法繁琐笨拙,后来渐渐被人遗忘、直到16世纪才又被重视。由于约翰尼斯开普勒在探索行星运动规律时,遇到了如何确定椭圆形面积和椭圆弧长的问题,无穷大和无穷小的概念被引入并代替了繁琐的穷竭法。尽管这种方法并不完善,但却为自卡瓦列里到费马以来的数学家开辟厂一个十分广阔的思考空间。
<p style=text-indent:2em;>费马大定理:n>2是整数,则方程x^n+y^n=z^n没有满足xyz≠0的整数解。这个是不定方程,它已经由英国数学家怀尔斯证明了(1995年),证明的过程是相当艰辛的!
<p style=text-indent:2em;>费马小定理:a^p-a≡0(mod p),其中p是一个素数,a是正整数,它的证明比较简单。事实上它是Euler定理的一个特殊情况,Euler定理是说:a^φ(n)-1≡0(mod n),a,n都是正整数,φ(n)是Euler函数,表示和n互素的小于n的正整数的个数(它的表达式欧拉已经得出,可以在"Euler公式"这个词条里找到)。
<p style=text-indent:2em;>'''<big>另外还有</big>''':
<p style=text-indent:2em;>(1)全部大于2的素数可分为4n+1和4n+3两种形式。
<p style=text-indent:2em;>(2)形如4n+1的素数能够,而且只能够以一种方式表为两个平方数之和。
1,014
次編輯