求真百科歡迎當事人提供第一手真實資料,洗刷冤屈,終結網路霸凌。

變更

前往: 導覽搜尋

增加 2,126 位元組, 4 年前
無編輯摘要
<big>'''铟'''</big>铟,是一种银白色并略带淡蓝色的金属,元素符号In, 质地非常软,能用指甲刻痕。可塑性强,有延展性,可压成片。金属铟主要用于制造低熔合金、轴承合金、 [[ 半导体 ]] 、电光源等的原料。
铟无毒,但应避免与皮肤接触和食入。
== 发现简史 ==
在自然界中未曾发现过游离态的铟单质,1863年,德国的赖希和李希特,用光谱法研究闪锌矿,发现新的元素,即铟。铊被发现和取得后,德国弗赖贝格(Freiberg)矿业学院物理学教授赖希由于对铊的一些性质感兴趣,希望得到足够的金属进行实验研究。于是他在1863年开始在夫赖堡希曼尔斯夫斯特出产的锌矿中寻找这种金属。这种矿石所含主要成分是含砷的 [[ 黄铁矿 ]] [[ 闪锌矿 ]] [[ 辉铅矿 ]] 、[[硅土]]、锰、铜和少量的锡、镉等。赖希认为其中还可能含有铊。虽然实验花费了很多时间,他却没有获得期望的元素。但是他得到了一种不知成分的草黄色沉淀物。他认为是一种新元素的硫化物。只有利用光谱进行分析来证明这一假设。可是赖希是色盲,只得请求他的助手H.T.李希特进行光谱分析实验。李希特在第一次实验就成功了,他在分光镜中发现一条靛蓝色的明线,位置和铯的两条蓝色明亮线不相吻合,就从希腊文中“靛蓝”(indikon)一词命名它为indium(铟)(In)。两位科学家共同署名发现铟的报告。分离出金属铟的还是他们两人共同完成的。他们首先分离出铟的氯化物和氢氧化物,利用吹管在木炭上还原成金属铟,于1867年在法国科学院展出。
== 矿藏分布 ==
铟在地壳中的分布量比较小,又很分散。它的富矿还没有发现过,只是在锌和其他一些金属矿中作为杂质存在,因此它被列入稀有金属。 [5]
已知铟矿物有硫铟铜矿(CuInS2)、硫铟铁矿(FeInS4)和水铟矿等。铟主要呈类质同象存在于铁闪锌矿、赤铁矿、方铅矿以及其他多金属硫化物矿石中。此外, [[ 锡石 ]] [[ 黑钨矿 ]] 、普通角闪石中也含铟。工业上,铟的主要来源为闪锌矿(含铟0.0001~0.1%),在铅锌矿冶炼过程中作为副产品回收,锡冶炼也回收铟。
铟属于稀散金属,是稀缺资源。全球预估铟储量仅5万吨,其中可开采的占50%。由于未发现独立铟矿,工业通过提纯废锌、废锡的方法生产金属铟,回收率约为50-60%,这样,真正能得到的铟只有1.5-1.6万吨。
铟(Indium)属于稀散金属。中国的铟储量居世界首位。中国铟矿59处,分布在15个省区,主要集中在云南(金属保有储量占全国的40%)、广西(31.4%)、内蒙古(8.2%)、青海(7.8%)、广东(7%)。尚未发现铟的单独矿床,它以微量伴生在锌、锡等矿物中。
铟产业被称为“信息时代的朝阳产业”。铟金属广泛应用于电子工业、航空航天、合金制造、太阳能电池新材料等高科技领域,在电子、电信、光电、国防、通讯等领域具有战略地位。陕西有色金属随着这些领域的发展,特别是平板显示行业的高速增长,铟产业具有广阔的前景,在国民经济中的地位越来越重要。铟主要作为包复层或与其它金属制成合金,以增强耐腐蚀性;铟的反射性,可用来制造反射镜;铟合金可作反应堆控制棒;铟及铟的化合物在无线电和半导体技术中也有重要用途。在1970年以前,铟基本上被应用于实验室。现在,铟是制造液晶显示器、手机屏幕不可缺少的材料。此外,添加了少量的铟后,合金轴承的使用寿命提高了4~5倍。铟锭主要用于ITO行业,这一用途是铟锭的主要消费领域,占全球铟消费量的84%。铟70%用于制造铟锡氧化物靶材(ITO),ITO用于制造液晶显示器(LCD),因此铟是制造液晶显示屏(LCD)的最重要材料。 2000~2006年间,世界铟的消费年均递增14. 4%,由于全球LCD的快速发展,使得其对铟需求的急速增加,2007年全球铟的年需求量逾400吨,但实际供应量不足300吨,再生铟产量亦仅有约30吨, 2008年全球铟需求量达568吨,而供应量却不到400吨,供需缺口持续扩大。预计2008~2010年年均递增17.2%,2010年达到1995吨。在未来,镀膜玻璃依然是铟的最大用途,碱性锌锰电池和光伏电池领域将是主要增长点。<ref>[hhttp://blog.sina.com.cn/s/blog_161917dd90102w9uu.html  铟的用途有哪些 ,新浪网 2016-06-06 ] </ref>
 
== 物理性质 ==
铟的提取工艺以萃取-电解法为主,这也是现今世界上铟生产的主流工艺技术。其原则工艺流程是:含铟原料→富集→化学溶解→净化→萃取→反萃取→锌(铝)置换→海绵铟→电解精炼→精铟。
世界上铟产量的90%来自铅锌冶炼厂的副产物。铟的冶炼回收方法主要是从铜、铅、锌的冶炼浮渣、熔渣及阳极泥中通过富集加以回收。根据回收原料的来源及含铟量的差别,应用不同的提取工艺,达到最佳配置和最大收益。常用的工艺技术有氧化造渣、金属置换、电解富集、酸浸萃取、萃取电解、离子交换、电解精炼等。当前较为广泛应用的是溶剂萃取法,它是一种高效分离提取工艺。离子交换法用于铟的回收,还未见工业化的报导。在从较难挥发的锡和铜内分离铟的过程中,铟多数集中在烟道灰和浮渣内。在挥发性的锌和镉中分离时,铟则富集于炉渣及滤渣内。 在ISP炼铅锌工艺中,精矿中的铟较大部分富集于粗锌精馏工序产出的粗铅中,回收富铟粗铅的铟,一直采用碱煮提铟工艺,存在生产能力小、生产成本高、金属回收率低等缺点。为了简化铟的提取流程,降低生产成本,提高金属回收率,针对原有的提铟生产工艺,本项目通过条件试验、循环实验及综合试验,研究开发了“富铟粗铅电解-铅电解液萃铟”提取工艺,确定了新工艺的最佳工艺参数。工艺流程为:粗铅熔化铸成极板,装入电解槽通电进行电解,阳极中的铟溶解进入电解液,当铟富集到一定浓度后,抽出电解液进行萃取、反萃,富铟反萃液经pH调节、置换、压团熔铸后得到粗铟。 [8] 分离提取铟的几种新技术:这些新技术使用的主要分离材料包括液膜、螯合 [[ 树脂 ]] 、浸渍树脂和微胶囊。在合适的条件下,运用这些技术可对铟进行有效地分离回收。这些新技术为分离回收铟提供了新的选择。 [9]
1,340
次編輯