1,014
次編輯
變更
萧荫堂
,無編輯摘要
'''<big>科研成果</big>'''
<p style="text-indent:2em;">发展了从hartogs图形到其包络的凝聚层的扩展理论以及亚纯映射到khker流形的扩展理论。</p >
<p style="text-indent:2em;">采用的L2估计,彻底解决了关于Lelong数的猜想,即一闭的正的广义外微分(p,p)式,其Lelong数≥c>0的点成一余维是p的解析簇。这是一个创新性的超越方法,后来成为用方法研究代数几何的先河,对复代数集合的研究有重大影响,已形成一个流派。</p >
<p style="text-indent:2em;">推广关于调和式的Bochner公式(实的情形)与Kodaira公式(复的情形)到调和映照,这把Mostow关于局部对称Hermite空间的刚性定理推广到Kodaira流形。他的公式对研究Kodaira几何,还对黎曼几何有重要的作用。1993年,进一步把Margulis关于算术的超刚性工作推广到几何的超刚性。</p >