求真百科歡迎當事人提供第一手真實資料,洗刷冤屈,終結網路霸凌。

變更

前往: 導覽搜尋

波粒二象性

增加 30,521 位元組, 5 年前
创建页面,内容为“{{NoteTA|G1=物理学}} FILE:Dualite.jpg|thumb|200px|波粒二象性示意图说明,从不同角度观察同样一件物体,可以看到两种迥然不同的…”
{{NoteTA|G1=物理学}}
[[FILE:Dualite.jpg|thumb|200px|波粒二象性示意图说明,从不同角度观察同样一件物体,可以看到两种迥然不同的图样。]]
在[[量子力学]]里,微观粒子有时会显示出波动性(这时粒子性较不显著),有时又会显示出粒子性(这时波动性较不显著),在不同条件下分别表现出波动或粒子的性质。这种称为'''波粒二象性'''({{lang|en|'''wave-particle duality'''}})的量子行为是微观[[粒子]]的基本属性之一。<ref name=French1978>{{citation | last=French|first=Anthony| title = An Introduction to Quantum Physics| date = 1978 | publisher = W. W. Norton, Inc.| isbn = 9780748740789}}</ref>{{rp|105-106}}

波粒二象性指的是微观粒子显示出的波动性与粒子性。波动所具有的波长与频率意味著它在空间方面与时间方面都具有延伸性。而粒子总是可以被观测到其在某时间与某空间的明确位置与动量。採用[[哥本哈根诠释]],更广义的[[互补原理]]可以用来解释波粒二象性。互补原理阐明,量子现象可以用一种方法或另外一种[[共轭物理量|共轭]]方法来观察,但不能同时用两种相互共轭的方法来观察。<ref name=Kumar2011>{{cite book | last =Kumar | first =Manjit | title =Quantum: Einstein, Bohr, and the Great Debate about the Nature of Reality | publisher =W. W. Norton & Company | edition =Reprint edition | date =2011 | isbn =978-0393339888}}</ref>{{rp|242, 375-376}}

==理论概述==
在[[古典力学]]里,研究对象总是被明确区分为「纯」粒子和「纯」波动。前者组成了我们常说的「[[物质]]」,后者的典型例子则是[[光波]]。波粒二象性解决了这个「纯」粒子和「纯」波动的困扰。它提供了一个理论框架,使得任何物质有时能够表现出粒子性质,有时又能够表现出波动性质。量子力学认为自然界所有的粒子,如[[光子]]、[[电子]]或是[[原子]],都能用一个[[微分方程]],如[[薛定谔方程]]来描述。这个方程的解即为[[波函数]],它描述了粒子的状态。波函数具有[[态迭加原理|迭加性]],它们能够像波一样互相干涉。同时,波函数也被解释为描述粒子出现在特定位置的[[机率幅]]。这样,粒子性和波动性就统一在同一个解释中。<ref name="Hobson">{{cite journal | last =Hobson | first =Art | title =There are no particles, there are only fields | journal =American Journal of Physics | volume =81 | issue =211 | year =2013 | url =http://arxiv.org/abs/1204.4616 | doi =10.1119/1.4789885}}</ref>{{rp|7}}{{#tag:ref|从波动观分析,薛丁格方程式乃是一个波动方程式,它完美地描述一个与时间、位置有关的概率波所发生的运动行为与所具有的量子性质,而解答这波动方程式的波函数可以诠释为「在某时间、某位置发生相互作用的概率幅」。这宽鬆的诠释方式可以适用于波动观或粒子观。<ref name="Hobson"/>{{rp|7}}|group="注"}}

之所以在日常生活中观察不到物体的波动性,是因为他们皆质量太大,导致[[德布罗意波长]]比可观察的极限尺寸要小很多,因此可能发生波动性质的尺寸在日常生活经验范围之外。这也是为什么经典力学能够令人满意地解释“自然现象”。反之,对于基本粒子来说,它们的质量和尺寸局限于量子力学所描述的范围之内,因而与我们所习惯的图景相差甚远。<ref name=French1978/>{{rp|85-87}}

==“波”和“粒子”的数学关系==
物质的粒子性由[[能量]] <math>E</math> 和[[动量]] <math>p</math> 刻画,波的特徵则由[[频率]] <math>\nu</math> 和[[波长]] <math>\lambda</math> 表达,这两组物理量由[[普朗克常数]] <math>h</math> 联系在一起:
:<math>\nu = \frac{E}{h}</math> 、
:<math>\lambda = \frac{h}{p}</math> 。

==历史==
[[File:Young Diffraction.png|right|thumb|200px|[[托马斯·杨]]做双缝实验得到的干涉图样。]]
在[[十九世纪]]后期,日臻成熟的[[原子论]]逐渐盛行,根据原子理论的看法,物质都是由微小的粒子——[[原子]]构成,例如,[[约瑟夫·汤姆孙]]的[[阴极射线]]实验证实,[[电流]]是由被称为[[电子]]的粒子所组成。在那时,物理学者认为大多数的物质是由粒子所组成。与此同时,[[波动论]]已经被相当深入地研究,包括[[波的干涉|干涉]]和[[衍射]]等现象。由于光波在[[杨氏双缝实验]]、[[夫琅禾费衍射|夫琅禾费衍射实验]]中所展现出的特性,明显地说明它是一种波动。

不过在[[二十世纪]]来临之时,这些观点面临了一些挑战。1905年,[[阿尔伯特·爱因斯坦]]对于[[光电效应]]用[[光子]]的概念来解释,物理学者开始意识到[[光波]]具有波动和粒子的双重性质。1924年,[[路易·德布罗意]]提出“[[物质波]]”假说,他主张,「一切物质」都具有波粒二象性,即具有波动和粒子的双重性质。根据[[德布罗意假说]],[[电子]]是应该会具有[[波的干涉|干涉]]和[[衍射]]等波动现象。1927年,[[柯林顿·戴维森]]与[[雷斯特·革末]]设计与完成的[[戴维森-革末实验]]成功证实了德布罗意假说。<ref name=French1978/>{{rp|17-21, 61-62, 64-68}}

==发展里程碑==
=== 惠更斯、牛顿 ===
[[File:Huygens_principle.gif|200px|right|thumb|按照[[惠更斯原理]],波的直线传播与球面传播。]]
较为完全的光理论最早是由[[克里斯蒂安·惠更斯]]发展成型,他提出了一种[[光波动说]]。使用这理论,他能够解释光波如何因相互干涉而形成[[波前]],在[[波前]]的每一点可以认为是产生球面次波的点波源,而以后任何时刻的波前则可看作是这些次波的包络。<ref name=Born>{{cite book | last1 =Born | first1 =Max | last2 =Wolf | first2 =Emil | title =Principles of Optics
| publisher =Cambridge University Press | edition =7th(expanded) | date =2011 | isbn =9780521642224
}}</ref>{{rp|141}}从他的原理,可以给出波的直线传播与球面传播的定性解释,并且推导出[[反射定律]]与[[折射定律]],但是他并不能解释,为什麽当光波遇到边缘、孔径或狭缝时,会偏离直线传播,即[[衍射]]效应。惠更斯假定次波只会朝前方传播,而不会朝后方传播。他并没有解释为什麽会发生这种物理行为。<ref name=Hecht2002>{{citation|last =Hecht |first=Eugene|title=Optics|year=2002| location=United States of America | publisher=Addison Wesley| edition= 4th| isbn=0-8053-8566-5 | language=en}}</ref>{{rp|104-105}}稍后,[[艾萨克·牛顿]]提出了[[光微粒说]]。他认为光是由非常奥妙的微粒组成,遵守[[运动定律]]。这可以合理解释光的直线移动和反射性质。但是,对于光的折射与[[衍射]]性质,牛顿的解释并不很令人满意,他遭遇到较大的困难。<ref name=Whittaker>{{citation|last=Whittaker|first= E. T.|title=A history of the theories of aether and electricity. Vol 1| publisher=Nelson, London |year=1951|url =http://www.archive.org/details/historyoftheorie00whitrich}}</ref>{{rp|15-21}}

由于牛顿无与伦比的学术地位,他的粒子理论在一个多世纪内无人敢于挑战,而惠更斯的理论则渐渐为人淡忘。直到十九世纪初[[衍射]]现象被发现,光的波动理论才重新得到承认。而光的波动性与粒子性的争论从未平息。<ref name="Newton2009">{{cite book|author=Roger G Newton|title=From Clockwork to Crapshoot: A History of Physics|accessdate=30 September 2013|date=30 June 2009|publisher=Harvard University Press|isbn=978-0-674-04149-3}}</ref>{{rp|87, 129-130}}

=== 杨、费涅尔、麦克斯韦、赫兹 ===
[[File:Ebohr1_IP.svg|right|200px|thumb|在[[双缝实验]]里,从光源 <math>\mathrm{a}</math> 传播出来的[[相干性|相干光束]],照射在一块刻有两条狭缝 <math>\mathrm{b}</math> 和 <math>\mathrm{c}</math> 的不透明挡板 <math>\mathrm{S2}</math> 。在挡板的后面,摆设了摄影胶卷或某种侦测屏 <math>\mathrm{F}</math> ,用来纪录到达 <math>\mathrm{F}</math> 的任何位置 <math>\mathrm{d}</math> 的光束。最右边黑白相间的条纹,显示出光束在侦测屏 <math>\mathrm{F}</math> 的干涉图样。]]
十九世纪早期,[[托马斯·杨]]和[[奥古斯丁·菲涅耳]]分别做出重大贡献。托马斯·杨完成的[[双缝实验]]显示出,衍射光波遵守[[叠加原理]],这是牛顿的光微粒说无法预测的一种波动行为。这实验确切地证实了光的波动性质。[[奥古斯丁·菲涅耳]]提出[[惠更斯-菲涅耳原理]],在惠更斯原理的基础上假定次波与次波之间会彼此发生干涉,又假定次波的波幅与方向有关。惠更斯-菲涅耳原理能够解释光波的朝前方传播与衍射现象。<ref name=Hecht2002/>{{rp|444-446}}光波动说并没有立刻取代光微粒说。但是,到了十九世纪中期,光波动说开始主导科学思潮,因为它能够说明[[偏振]]现象的机制,这是光微粒说所不能够的。

同世纪后期,[[詹姆斯·马克士威]]将[[电磁学]]的理论加以整合,提出[[马克士威方程组]]。这方程组能够分析电磁学的种种现象。从这方程组,他推导出[[电磁波方程式]]。应用电磁波方程式计算获得的[[电磁波]]波速等于做实验测量到的光波速度。马克士威于是猜测光波就是电磁波。[[电磁学]]和光学因此联结成统一理论。1888年,[[海因里希·赫兹]]做实验发射并接收到马克士威预言的电磁波,证实马克士威的猜测正确无误。从这时,光波动说开始被广泛认可。<ref name=Whittaker/>{{rp|359-360}}

===普朗克黑体辐射定律===
{{Main|普朗克黑体辐射定律}}
1901年,[[马克斯·普朗克]]发表了一份研究报告,他对于[[黑体]]在平衡状况的发射光波频谱的预测,完全符合实验数据。在这份报告里,他做出特别数学假说,将谐振子(组成[[黑体]]牆壁表面的原子)所发射或吸收的电磁辐射能量加以量子化,他称呼这种离散能量为[[量子]],与辐射频率 <math>\nu</math> 的关系式为
:<math>E = h\nu</math> ;

其中,<math>E</math> 是离散能量,<math>h</math> 是[[普朗克常数]]。

这就是著名的[[普朗克关系式]]。从普朗克的假说,普朗克推导出一条黑体能量分佈定律,称为[[普朗克黑体辐射定律]]。<ref name="Newton2009"/>{{rp|212}}

=== 爱因斯坦与光子 ===
{{main|光电效应}}
[[Image:Photoelectric effect.svg|thumb|right|200px|光电效应示意图:来自左上方的光子衝撞到金属表面,将电子逐出金属表面,并且向右上方移去。]]
[[光电效应]]指的是,照射[[光束]]于[[金属]]表面会使其发射出[[电子]]的效应,发射出的电子称为[[光电子]]。为了产生光电效应,光频率必须超过金属物质的特徵频率,称为其「极限频率」。<ref name=Halliday>{{citation |last1=Halliday|first1=David|last2=Resnick|first2=Robert|last3=Walker|first3=Jerl|title = Fundamental of Physics|publisher = John Wiley and Sons, Inc.|location = USA|edition = 7th|isbn=0-471-23231-9|year=2005}}</ref>{{rp|1060-1063}}<ref name=Serway2013>{{cite book
|last1=Serway|first1=Raymond|last2=Jewett|first2=John
| title =Physics for Scientists and Engineers with Modern Physics
| publisher =Cengage Learning
| edition =9th
| date =2013
| isbn =978-1133954057 }}</ref>{{rp|1240-1246}}举例而言,照射[[辐照度]]很微弱的蓝光束于[[钾]]金属表面,只要频率大于其极限频率,就能使其发射出光电子,但是无论辐照度多么强烈的红光束,一旦频率小于钾金属的极限频率,就无法促使发射出光电子。根据光波动说,光波的[[辐照度]]或波幅对应于所携带的能量,因而辐照度很强烈的光束一定能提供更多能量将电子逐出。然而事实与古典理论预期恰巧相反。

1905年,爱因斯坦对于光电效应给出解释。他将光束描述为一群离散的量子,现称为[[光子]],而不是连续性波动。从[[普朗克黑体辐射定律]],爱因斯坦推论,组成光束的每一个光子所拥有的能量 <math>E</math> 等于频率 <math>\nu</math> 乘以一个常数,即普朗克常数,他提出了「爱因斯坦光电方程式」
:<math> h \nu=K_{max}+W</math> ;

其中,<math>K_{max}</math> 是逃逸电子的最大动能,<math>W</math> 是逸出功。

假若光子的频率大于物质的[[#极限频率|极限频率]],则这光子拥有足够能量来克服逸出功,使得一个电子逃逸,造成光电效应。爱因斯坦的论述解释了为甚麽光电子的能量只与频率有关,而与辐照度无关。虽然蓝光的辐照度很微弱,只要频率足够高,则会产生一些高能量光子来促使束缚电子逃逸。儘管红光的辐照度很强烈,由于频率太低,无法给出任何高能量光子来促使束缚电子逃逸。

1916年,美国物理学者[[罗伯特·密立根]]做实验证实了爱因斯坦关于光电效应的理论。从[[马克士威方程组]],无法推导出普朗克与爱因斯坦分别提出的这两个非古典论述。物理学者被迫承认,除了波动性质以外,光也具有粒子性质。<ref name=Braginsky1995/>{{rp|2}}

既然光具有波粒二象性,应该也可以用波动概念来分析光电效应,完全不需用到光子的概念。1969年,[[威利斯·兰姆]]与[[马兰·斯考立]](Marlan Scully)应用在原子内部束缚电子的能级跃迁机制证明了这论述。<ref name="Lamb1968">{{cite news|first = Willis E.|last = Lamb|last2 = Scully|first2 = Marlan O.|title = Photoelectric effect without photons, discussing classical field falling on quantized atomic electron |url =http://ntrs.nasa.gov/search.jsp?R=19690054849|year = 1969}}</ref>

=== 德布罗意与物质波 ===
{{multiple image
| align = right
| direction = vertical
| footer =[[物质波|德布罗意波]]的1维传播,複值波幅的实部以蓝色表示、虚部以绿色表示。在某位置找到粒子的机率(以颜色的不透明度表示)呈波形状延展。
| image1 = Propagation of a de broglie plane wave.svg
| caption1 = [[平面波]]
| width1 = 200
| image2 = Propagation of a de broglie wavepacket.svg
| caption2 = [[波包]]
| width2 = 200
}}
{{Main|物质波}}
1924年,[[路易·德布罗意]]表述出[[德布罗意假说]]。他声称,所有物质都拥有类波动属性。他将物质的[[波长]] <math>\lambda</math> 和[[动量]] <math>p</math> 联系为<ref name="Newton2009"/>{{rp|234}}
:<math>\lambda = h/p</math> 。

这是先前爱因斯坦等式的推广,因为光子的动量为 <math>p=E/c</math> ,而 <math>\lambda=c/\nu</math> ;其中,<math>c</math> 是光速。

三年后,通过两个独立的电子[[衍射]]实验,德布罗意的方程式被证实可以用来描述电子的量子行为。在[[阿伯丁大学]],[[乔治·汤姆孙]]将电子束照射穿过薄金属片,并且观察到预测的干涉样式。在[[贝尔实验室]],[[克林顿·戴维森]]和[[雷斯特·革末]]做实验将低速电子入射于镍晶体,取得电子的绕射图样,这结果符合理论预测。

===海森堡不确定性原理===
{{Main|海森堡不确定性原理}}
1927年,[[维尔纳·海森堡]]提出海森堡不确定性原理,他表明<ref name="Newton2009"/>{{rp|232-233}}
:<math>\Delta x \Delta p \ge \frac{\hbar}{2} </math> ;

其中,<math>\Delta</math> 表示[[标准差]],一种不确定性的量度,<math>x</math> 、<math>p</math> 分别是粒子的位置与动量。

海森堡原本解释他的不确定性原理为测量动作的后果:准确地测量粒子的位置会搅扰其动量,反之亦然。他并且给出一个思想实验为范例,即著名的[[海森堡显微镜实验]],来说明电子位置和动量的不确定性。这思想实验关键地倚靠德布罗意假说为其论述。但是现今,物理学者认为,测量造成的搅扰只是其中一部分解释,不确定性存在于粒子本身,是粒子内秉的性质,在测量动作之前就已存在。

实际而言,对于不确定原理的现代解释,将[[尼尔斯·玻尔]]与海森堡主导提出的[[哥本哈根诠释]]加以延伸,更甚倚赖于粒子的波动说:就如同研讨传播于细绳的波动在某时刻所处的准确位置是毫无意义的,粒子没有完美准确的位置;同样地,就如同研讨传播于细绳地脉波的波长是毫无意义地,粒子没有完美准确的动量。此外,假设粒子的位置不确定性越小,则动量不确定性越大,反之亦然。<ref name=Braginsky1995>{{cite book|author1=Vladimir B. Braginsky|author2=Farid Ya Khalili|title=Quantum Measurement|date=25 May 1995|publisher=Cambridge University Press|isbn=978-0-521-48413-8}}</ref>{{rp|7-12, 19-21}}

==大尺寸物体的波动行为==
自从物理学者演示出光子与电子具有波动性质之后,对于[[中子]]、[[质子]]也完成了很多类似实验。在这些实验里,比较著名的是于1929年[[奥托·斯特恩]]团队完成的[[氢]]、[[氦]]粒子束[[衍射]]实验,这实验精彩地演示出[[原子]]和[[分子]]的波动性质。<ref>{{cite web
| title =Otto Stern - Biographical
| publisher =Nobelprize.org. Nobel Media
| url =http://www.nobelprize.org/nobel_prizes/physics/laureates/1943/stern-bio.html}}</ref><ref>{{cite journal|last = Estermann
| first = I.
| authorlink =
| coauthors = Stern O.
| title = Beugung von Molekularstrahlen
| journal = Zeitschrift für Physik
| volume = 61
| issue =
1-2| pages = 95–125
| publisher =
| location =
| year = 1930
| url =
| doi = 10.1007/BF01340293
| id =
| accessdate = |bibcode = 1930ZPhy...61...95E }}</ref>近期,关于原子、分子的类似实验显示出,更大尺寸、更複杂的粒子也具有波动性质,这在本段落会有详细说明。

1970年代,物理学者使用[[中子干涉仪]](neutron interferometer)完成了一系列实验,这些实验强调[[引力]]与波粒二象性彼此之间的关系。<ref>R. Colella, A. W. Overhauser and S. A. Werner, Observation of Gravitationally Induced Quantum Interference, ''Phys. Rev. Lett.'' '''34''', 1472–1474 (1975).</ref>中子是组成[[原子核]]的粒子之一,它贡献出原子核的部分质量,由此,也贡献出普通物质的部分质量。在中子干涉仪里,中子就好似量子波一样,直接感受到引力的作用。因为万物都会感受到引力的作用,包括[[光子]]在内(请参阅条目[[广义相对论的实验验证]]),这是已知的事实,这实验所获得的结果并不令人惊讶。但是,带质量费米子的量子波,处于引力场内,自我干涉的现象,尚未被实验证实。

1999年,[[维也纳大学]]研究团队观察到C<sub>60</sub> [[富勒烯]]的衍射<ref>{{cite journal | first = Markus | last = Arndt | coauthors = O. Nairz, J. Voss-Andreae, C. Keller, G. van der Zouw, A. Zeilinger | title = Wave–particle duality of C<sub>60</sub> | journal = Nature | volume = 401 | pages = 680–682 | url = http://www.nature.com/nature/journal/v401/n6754/abs/401680a0.html | doi = 10.1038/44348 | pmid = 18494170 | issue = 6754 | bibcode=1999Natur.401..680A|date=14 October 1999}}</ref>[[富勒烯]]是相当大型与沉重的物体,[[原子量]]为720 [[原子质量单位|u]],[[德布罗意波长]]为2.5&nbsp;[[皮米|pm]],而分子的直径为1&nbsp;[[奈米|nm]],大约400倍大。2012年,这远场衍射实验被延伸实现于[[酞菁]]分子和比它更重的衍生物,这两种分子分别是由58和114个原子组成。在这些实验里,干涉图样的形成被实时计录,敏感度达到单独分子程度。<ref name="Nano-20120325">{{cite journal |author=Juffmann, Thomas et al |title=Real-time single-molecule imaging of quantum interference |url=http://www.nature.com/nnano/journal/vaop/ncurrent/full/nnano.2012.34.html |date=25 March 2012 |publisher=Nature Nanotechnology |accessdate=27 March 2012 }}</ref>

2003年,同样维也纳研究团队演示出[[四苯基补琳]](tetraphenylporphyrin)的波动性。这是一种延伸达2&nbsp;nm、质量为614&nbsp;u的生物染料。<ref name="fn_4">{{cite journal | first = Lucia | last = Hackermüller | coauthors = Stefan Uttenthaler, Klaus Hornberger, Elisabeth Reiger, Björn Brezger, Anton Zeilinger and Markus Arndt | year = 2003 | title = The wave nature of biomolecules and fluorofullerenes | journal = Phys. Rev. Lett. | volume = 91 | pages = 090408 | url = http://www.nature.com/cgi-taf/DynaPage.taf?file=/nature/journal/v401/n6754/full/401680a0_fs.html&content_filetype=pdf | doi = 10.1103/PhysRevLett.91.090408 | pmid = 14525169 | issue = 9 | bibcode=2003PhRvL..91i0408H|arxiv = quant-ph/0309016 }}</ref>在这实验里,他们使用的是一种近场[[塔尔博特-劳厄干涉仪]](Talbot Lau interferometer)。<ref>{{cite journal | first = John F. | last = Clauser | coauthors = S. Li | year = 1994 | title = Talbot von Lau interefometry with cold slow potassium atoms. | journal = Phys. Rev. A | volume = 49 | issue = 4 | pages = R2213–17| doi = 10.1103/PhysRevA.49.R2213 |bibcode = 1994PhRvA..49.2213C | pmid=9910609}}</ref><ref>{{cite journal | first = Björn | last = Brezger | coauthors = Lucia Hackermüller, Stefan Uttenthaler, Julia Petschinka, Markus Arndt and Anton Zeilinger | year = 2002 | title = Matter-wave interferometer for large molecules | journal = Phys. Rev. Lett. | volume = 88 | pages = 100404 | url = http://ojps.aip.org/getpdf/servlet/GetPDFServlet?filetype=pdf&id=PRLTAO000088000010100404000001&idtype=cvips | doi = 10.1103/PhysRevLett.88.100404 | pmid = 11909334 | issue = 10 | bibcode = 2002PhRvL..88j0404B | arxiv = quant-ph/0202158 }}{{dead link|date=2018年1月 |bot=InternetArchiveBot |fix-attempted=yes }}</ref>使用这种干涉仪,他们又观察到C<sub>60</sub>F<sub>48.</sub>的干涉条纹,C<sub>60</sub>F<sub>48.</sub>是一种[[巴基球|氟化巴基球]],质量为1600 u,是由108 个原子组成。<ref name="fn_4" />像C<sub>70</sub>富勒烯一类的大型分子具有恰当的複杂性来显示量子干涉与[[量子退相干]],因此,物理学者能够做实验检试物体在量子-古典界限附近的物理行为。<ref>{{cite journal | first = Klaus | last = Hornberger | coauthors = Stefan Uttenthaler,Björn Brezger, Lucia Hackermüller, Markus Arndt and Anton Zeilinger | year = 2003 | title = Observation of Collisional Decoherence in Interferometry | journal = Phys. Rev. Lett. | volume = 90 | pages = 160401 | url = http://ojps.aip.org/getpdf/servlet/GetPDFServlet?filetype=pdf&id=PRLTAO000090000016160401000001&idtype=cvips | doi = 10.1103/PhysRevLett.90.160401 | pmid = 12731960 | issue = 16 | bibcode = 2003PhRvL..90p0401H | arxiv = quant-ph/0303093 }}{{dead link|date=2018年1月 |bot=InternetArchiveBot |fix-attempted=yes }}</ref><ref>{{cite journal | first = Lucia | last = Hackermüller | coauthors = Klaus Hornberger, Björn Brezger, Anton Zeilinger and Markus Arndt | year = 2004 | title = Decoherence of matter waves by thermal emission of radiation| journal = Nature | volume = 427 | pages = 711–714 | url = http://www.nature.com/cgi-taf/DynaPage.taf?file=/nature/journal/v427/n6976/full/nature02276_fs.html&content_filetype=PDF | doi = 10.1038/nature02276 | pmid = 14973478 | issue = 6976 |arxiv = quant-ph/0402146 |bibcode = 2004Natur.427..711H }}</ref><ref group="注">物理学者可以很容易地观察到微观物体的量子性质,但物理学者无法观察到宏观物体的量子性质。从做实验研究越来越具複杂性的物体,物理学者希望能够了解,在这两类不相容描述的界面附近,到底会出现甚麽样的物理行为。</ref>2011年,对于质量为6910&nbsp;u的分子做实验成功展示出干涉现象。<ref>{{cite journal|last=Gerlich|first=Stefan|coauthors=et al.|title=Quantum interference of large organic molecules|journal=Nature Communications|year=2011|volume=2|issue=263|doi=10.1038/ncomms1263|bibcode = 2011NatCo...2E.263G|pmid=21468015|pmc=3104521}}</ref>2013年,实验证实,质量超过10,000&nbsp;u的分子也能发生干涉现象。<ref name="Eibenberger2013">{{cite journal|url=http://xlink.rsc.org/?DOI=c3cp51500a|title=Matter–wave interference of particles selected from a molecular library with masses exceeding 10 000 amu|journal=Physical Chemistry Chemical Physics|volume=15|issue=35|issn=1463-9084|date=2013-08-14|language=en|accessdate=2018-04-03|doi=10.1039/c3cp51500a|author=Sandra Eibenberger, Stefan Gerlich, Markus Arndt, Marcel Mayor, Jens Tüxen}}</ref>

在物理学里,长度与质量之间存在有两种基本关系。一种是[[广义相对论]]关系:粒子的[[史瓦西半径]]<math>r_s</math>与质量<math>m</math> 成正比:
:<math>r_s=2Gm/c^2</math>。

另一种是量子力学关系:粒子的[[康普顿波长]]<math>\lambda_c</math>与质量成反比:
:<math>\lambda_c=h/mc</math>。

[[普朗克质量]]可以定义为,当康普顿波长等于史瓦西半径乘以<math>\pi</math>时,粒子的质量:
:<math>m_p=\sqrt{\hbar c/G}</math>。

大致而言,康普顿波长是量子效应开始变得重要时的系统长度尺寸,粒子质量越大,则康普顿波长越短。史瓦西半径是粒子变为黑洞时的其所有质量被拘束在内的圆球半径,粒子越重,史瓦西半径越大。当粒子的康普顿波长大约等于史瓦西半径时,粒子的质量大约为普朗克质量,粒子的运动行为会强烈地受到[[量子引力]]影响。<!--link from Planck mass#Compton wavelength and Schwarzschild radius-->

普朗克质量为2.18&times;10<sup>-5</sup>g,超大于所有已知基本粒子的质量;[[普朗克长度]]为1.6&times;10<sup>-33</sup>cm,超小于核子尺寸。从理论而言,质量大于[[普朗克质量]]的物体是否拥有[[德布罗意波长]]这个问题不很清楚;从实验而言,是无法达到的。这物体的[[康普顿波长]]会小于[[普朗克长度]]和[[史瓦兹半径]],在这尺寸,当今物理理论可能会失效,可能需要更广义理论替代。<ref>Peter Gabriel Bergmann, ''The Riddle of Gravitation'', Courier Dover Publications, 1993 ISBN 978-0-486-27378-5]</ref>{{rp|x}}

2009年,伊夫·库德(Yves Couder)发佈论文表示,宏观油滴弹跳于振动表面可以用来模拟波粒二象性,[[毫米]]尺寸的油滴会生成周期性波动,对于这些油滴的相互作用会引起类量子现象,例如,[[双缝实验|双缝干涉]]、,<ref>Y. Couder, E. Fort, ''Single-Particle Diffraction and Interference at a Macroscopic Scale'', PRL 97, 154101 (2006) [https://hekla.ipgp.fr/IMG/pdf/Couder-Fort_PRL_2006.pdf online] {{Wayback|url=https://hekla.ipgp.fr/IMG/pdf/Couder-Fort_PRL_2006.pdf |date=20110721001055 }}</ref>[[量子穿隧效应|不可预料的穿隧]]、<ref>A. Eddi, E. Fort, F. Moisy, Y. Couder, ''Unpredictable Tunneling of a Classical Wave–Particle Association'', [http://prl.aps.org/abstract/PRL/v102/i24/e240401 PRL 102, 240401 (2009)]</ref>[[氢原子|轨道量子化]]、<ref>E. Fort, A. Eddi, A. Boudaoud, J. Moukhtar, Y. Couder, ''Path-memory induced quantization of classical orbits'', [http://www.pnas.org/content/107/41/17515 PNAS October 12, 2010 vol. 107 no. 41 17515-17520]</ref>[[塞曼效应]]等等。<ref>http://prl.aps.org/abstract/PRL/v108/i26/e264503 - Level Splitting at Macroscopic Scale</ref>

==应用==
儘管划一条界线将波粒二象性与量子力学的其它部分区分开来是一件相当困难的事,以下列出一些实际应用波粒二象性的科技:
*[[电子显微镜]]利用波粒二象性来显示样品的结构。电子的波长很短,比可见光的波长还短100000倍,可以用来观察更小的样品。电子显微镜的[[分辨率]](约0.05[[奈米]])远优于[[光学显微镜]]的分辨率(约200奈米)。<ref name=erni>{{cite journal|doi=10.1103/PhysRevLett.102.096101|title=Atomic-Resolution Imaging with a Sub-50-pm Electron Probe|year=2009|author=Erni, Rolf|journal=Physical Review Letters|volume=102|pages=096101|pmid=19392535|last2=Rossell|first2=MD|last3=Kisielowski|first3=C|last4=Dahmen|first4=U|issue=9|bibcode=2009PhRvL.102i6101E}}</ref>
*类似地,[[中子衍射技术]]使用波长大约为0.1&nbsp;[[奈米]](物体内部原子之间通常的距离)的中子束来观察固体结构。

==学术进展==
===获得首张图像,光同时显现波动性和粒子性===
一直以来,人们从未'''直接'''观测到粒子'''在同一时刻'''表现出波和粒子的形态。

2015年3月2日,来自École polytechnique fédérale de Lausanne的研究者们发表了他们的新发现。<ref>EPFL News(2015-02-03)The first ever photograph of light as both a particle and wave</ref>他们用射入[[奈米线]]的光脉衝的两个反向分量形成[[驻波]],然后在附近注入一束电子,电子束因遭遇光驻波而被加速或减速,通过记录这些速度改变的区域,研究者们得以显现驻波的外观,而驻波体现了光的波动性。实验在显现光的波动性的同时,也显示了其粒子性。当电子进入驻波,它们撞击光子并改变了速度。速度上的变化表明光子和电子之间能量包(量子)的交换。这种速度上的变化以及它所暗示的能量交换表明驻波中存在的粒子行爲。

主持实验的Fabrizio Carbone认爲,这表明[[量子力学]]的悖论式的特质是可以被直接记录的,还认为,象这样在纳米尺度描绘并且控制量子现象,开闢了通向量子计算的新途径。他们的突破性研究发表在Nature Communications。<ref>nature.com: Simultaneous observation of the quantization and the interference pattern of a plasmonic near-field (Received:25 April 2014, Accepted: 27 January 2015, Published:02 March 2015)</ref>

==参阅==
* [[阿弗沙尔实验]]
* [[惠勒延迟选择实验]]

==注释==
{{reflist|group="注"}}

==参考文献==
{{reflist|2}}
{{量子力学}}
[[category:基础量子物理学|B]]
[[category:对偶理论|B]]
1,399
次編輯