求真百科欢迎当事人提供第一手真实资料,洗刷冤屈,终结网路霸凌。

非线性系统查看源代码讨论查看历史

事实揭露 揭密真相
跳转至: 导航搜索
非线性系统

来自 网络 的图片

非线性系统,线性系统是状态变量和输出变量对于所有可能的输入变量和初始状态都满足叠加原理的系统。一个由线性元部件所组成的系统必是线性系统。但是,相反的命题在某些情况下可能不成立。线性系统的状态变量(或输出变量)与输入变量间的因果关系可用一组线性微分方程或差分方程来描述,这种方程称为系统的数学模型。

简介

会出现一些在线性系统中不可能发生的奇特现象,归纳起来有如下几点:

1、线性系统的稳定性和输出特性只决定于系统本身的结构和参数。而非线性系统的稳定性和输出动态过程,不仅与系统的结构和参数有关,而且还与系统的初始条件和输入信号大小有关。例如,在幅值大的初始条件下系统的运动是收敛的(稳定的),而在幅值小的初始条件下系统的运动却是发散的(不稳定的),或者情况相反。

2、非线性系统的平衡运动状态,除平衡点外还可能有周期解。周期解有稳定和不稳定两类,前者是实际可观察到的,后者观察不到。因此在某些非线性系统中,即使没有外部输入作用也会产生有一定振幅和频率的振荡,称为自激振荡,相应的相轨线为极限环。改变系统的参数可以改变自激振荡的振幅和频率。这个特性可应用于实际工程问题,以达到某种技术目的。例如,根据所测温度来影响自激振荡的条件,使之振荡或消振,可以构成双位式温度调节器。

3、线性系统的输入为正弦函数时,其输出的稳态过程也是同频率的正弦函数,两者仅在相位和幅值上不同。但非线性系统的输入为正弦函数时,其输出则是包含有高次谐波的非正弦周期函数,即输出会产生倍频、分频、频率侵占等现象。④复杂的非线性系统在一定条件下还会产生突变、分岔、混沌等现象。

评价

非线性系统的分析远比线性系统为复杂,缺乏能统一处理的有效数学工具。在许多工程应用中,由于难以求解出系统的精确输出过程,通常只限于考虑:①系统是否稳定。②系统是否产生自激振荡(见非线性振动)及其振幅和频率的测算方法。③如何限制自激振荡的幅值以至消除它。例如一个频率是ω的自激振荡可被另一个频率是ω1的振荡抑制下去,这种异步抑制现象已被用来抑制某些重型设备的伺服系统中由于齿隙引起的自振荡。

现代广泛应用于工程上的分析方法有基于频率域分析的描述函数法和波波夫超稳定性等,还有基于时间域分析的相平面法和李雅普诺夫稳定性理论等。这些方法分别在一定的假设条件下,能提供关于系统稳定性或过渡过程的信息。

在工程上还经常遇到一类弱非线性系统,即特性和运动模式与线性系统相差很小的系统。对于这类系统通常以线性系统模型作为一阶近似,得出结果后再根据系统的弱非线性加以修正,以便得到较精确的结果。摄动方法是处理这类系统的常用工具。而对于本质非线性系统,则需要用分段线性化法等非线性理论和方法来处理。

现代广泛应用于工程上的分析方法有基于频率域分析的描述函数法和波波夫超稳定性等,还有基于时间域分析的相平面法和李雅普诺夫稳定性理论等。这些方法分别在一定的假设条件下,能提供关于系统稳定性或过渡过程的信息。而计算机技术的迅速发展为分析和设计复杂的非线性系统提供了有利的条件。

在某些工程问题中,非线性特性还常被用来改善控制系统的品质。例如将死区特性环节和微分环节同时加到某个二阶系统的反馈回路中去,就可以使系统的控制既快速又平稳。又如,可以利用继电特性来实现最速控制系统。

非线性控制系统在许多领域都具有广泛的应用。除了一般工程系统外,在机器人、生态系统和经济系统的控制中也具有重要意义。[1]

参考文献