求真百科歡迎當事人提供第一手真實資料,洗刷冤屈,終結網路霸凌。

色散查看源代码讨论查看历史

关山梅子讨论 | 贡献2021年8月25日 (三) 17:12的版本 (added Category:300 科學總論 using HotCat
(差异) ←上一版本 | 最后版本 (差异) | 下一版本→ (差异)
跳转至: 导航搜索
  色散

色散是复色光分解为单色光而形成光谱的现象。色散可以利用棱镜或光栅等作用为色散系统的仪器来实现。如复色光进入棱镜后,由于它对各种频率的光具有不同折射率,各种色光的传播方向有不同程度的偏折,因而在离开棱镜时就各自分散,形成光谱。例如太阳光通过三棱镜后,产生自红到紫循序排列的彩色连续光谱。复色光通过光栅或干涉仪时,由于光的衍射和干涉作用,也能使各种色光分散。从广泛的意义上来说,色散不仅指光波分解成频谱,而且任何物理量只要随频率(或波长)变化而变化,都称色散,例如旋光色散等。

简介

材料的折射率随入射光频率的改变而改变的性质,称为“色散”。光的色散分为正常色散和反常色散。随着光频率升高介质折射率增大的色散称为正常色散,反之随着频率的降低介质折射率减小的现象称为反常色散。图1为几种光学材料的色散曲线。色散可通过棱镜或光栅等作为“色散系统”的仪器来实现。如一细束阳光可被棱镜分为红、橙、黄、绿、蓝、靛、紫七色光。这是由于复色光中的各种色光的折射率不相同。当它们通过棱镜时,传播方向有不同程度的偏折,因而在离开棱镜则便各自分散。色散能够给人们带来美丽的彩虹,但是如果色散发生在光通信系统中,就没有那么美好了。尽管色散的概念是从光的色散现象提出来的,但色散的含意远超出了光在介质中传播的范畴,它涉及了介质中集体激发的各个领域。例如格波的频率与其波矢的关系称格波的色散关系。光波与长光学横波耦合而产生的极化激元(电磁耦合场量子)的频率与其波矢之间的关系称极化激元的色散关系。磁激子(自旋波量子)的能量子与其自旋波波矢的关系构成了磁激子的色散关系。另外色散概念也用于量子场论中。也可用于描述传播参数与频率之间的关系。在光纤中的色散由材料色散、波导色散、 折射率分布色散等组成,会引起传输信号的失真

评价

在“损耗”术语中,我们了解到,色散是光纤传输中的损耗之一。随着光纤制造工艺的不断提高,光纤损耗对光通信系统的传输距离不再起主要限制作用,色散上升为首要限制因素之一。当光纤的输入端光脉冲信号经过长距离传输以后,在光纤输出端,光脉冲波形发生了时域上的展宽,这种现象即为色散。以单模光纤中的色散现象为例,色散将导致码间干扰,在接收端将影响光脉冲信号的正确判决,误码率性能恶化,严重影响信息传送。发生原因是光能量在纤芯及包层中传输时,会以稍有不同的速度行进。在单模光纤中,通过改变光纤内部结构来改变光纤的色散非常重要。复合光通过三棱镜等分光器被分解为各种单色光的现象,叫做光的色散。分开的单色光依次排列而成的光带叫做光谱。各种颜色的光在真空中都以恒定的速度 传播;而在介质中,光波的传播速度要减小;而且不同频率的光波,传播速度也各不相同。因此,同一介质对不同的单色光折射率是不同的,红色光的折射率最小,紫色光的折射率最大。介质折射率随光波频率或真空中的频率而变的现象。当复色光在介质界面上折射时,介质对不同频率的光有不同的折射率,各色光因折射角不同而彼此分离。1672年,牛顿利用三棱镜将太阳光分解成彩色光带,这是人们首次作的色散实验。通常用介质的折射率n或色散率与频率的关系来描述色散规律。任何介质的色散均可分正常色散和反常色散两种。[1]

参考文献

  1. 色散搜狗