求真百科欢迎当事人提供第一手真实资料,洗刷冤屈,终结网路霸凌。

热传导方程查看源代码讨论查看历史

事实揭露 揭密真相
跳转至: 导航搜索

热传导方程(或称热方程)是一个重要的偏微分方程,它描述一个区域内的温度如何随时间变化。[1]

物理动机

热传导在三维的等方向均匀介质里的传播可用以下方程表达:温度对三个空间坐标轴的二次导数;k是热扩散率,决定于材料的热传导率、密度与热容。

热方程是傅里叶冷却律的一个推论(详见条目热传导)。如果考虑的介质不是整个空间,则为了得到方程的唯一解,必须指定u的边界条件。如果介质是整个空间,为了得到唯一性,必须假定解的增长速度有个指数型的上界,此假定吻合实验结果。

热方程的解具有将初始温度平滑化的特质,这代表热从高温处向低温处传播。一般而言,许多不同的初始状态会趋向同一个稳态(热平衡)。因此我们很难从现存的热分布反解初始状态,即使对极短的时间间隔也一样。

热方程也是抛物线偏微分方程最简单的例子。

热方程支配热传导及其它扩散过程,诸如粒子扩散或神经细胞的动作电势。热方程也可以作为某些金融现象的模型,诸如布莱克-斯科尔斯模型与Ornstein-Uhlenbeck过程。热方程及其非线性的推广型式也被应用于影像分析。量子力学中的薛定谔方程虽然有类似热方程的数学式(但时间参数为纯虚数),本质却不是扩散问题,解的定性行为也完全不同。

就技术上来说,热方程违背狭义相对论,因为它的解表达了一个扰动可以在瞬间传播至空间各处。扰动在前方光锥外的影响通常可忽略不计,但是若要为热传导推出一个合理的速度,则须转而考虑一个双曲线型偏微分方程。

应用

热方程在许多现象的数学模型中出现,而且常在金融数学中作为期权的模型出现。著名的布莱克-斯科尔斯模型中的差分方程可以转成热方程,并从此导出较简单的解。许多简单期权的延伸模型没有解析解,因此必须以数值方法计算模型给出的定价。热方程可以用Crank-Nicolson法有效地求数值解,此方法也可用于许多无解析解的模型。

参见

偏微分方程

发展方程

视频

热传导方程 相关视频

热传导方程的解释
热传导方程的直观解释

参考文献

  1. 关于热传导方程,豆丁网,2014-12-13