楊靜(合肥工業大學)檢視原始碼討論檢視歷史
楊靜,女,合肥工業大學計算機與信息學院副教授。
人物履歷
CCF會員、IEEE 會員、中國人工智能學會會員。分別於2004和2013年獲合肥工業大學碩士和博士學位,2014年10月-2015年10月以合肥工業大學青年骨幹教師赴美國哈佛大學訪問12個月,主要研究領域為人工智能、因果發現、生物信息學等。
社會任職
擔任IEEE TKDD、TKDE、TNNLS、KBS、IS、PR等多個國際頂級期刊審稿人,國家自然科學基金函評專家
研究方向
科研項目
1.國家自然科學基金委員會,國家自然科學基金面上項目,62176082,面向動態非歐數據的因果結構學習關鍵問題研究,2022/01-2025/12;
2.安徽省科學技術廳重點研究與開發計劃面上攻關項目,201904a05020073,數據驅動的燃機狀態分析和故障預測關鍵問題研究,2019/01-2021/12;
2. 合肥工業大學平台A類項目科學前沿創新專項,PA2018GDQT0011,加性噪聲模型的因果結構學習關鍵問題研究,2018/01-2020/12;
3. 國家自然科學基金青年項目,61305064,面向非線性非高斯數據的因果結構學習算法研究,2014/01- 2016/12;
4. 科技部國家高技術研究發展計劃(863計劃)子課題,2012AA011005,多源異構數據集成與挖掘的關鍵技術研究,2012/12-2013/12;
5. 安徽省科技廳科技攻關計劃項目子課題,1001130612,公安應急管理和指揮調度輔助決策系統關鍵技術研究,2010/01-2012/12;
6. 合肥工業大學科學研究發展基金,062101f,基於粗糙集理論的聚類分析研究,2006/01-2007/12。
獲獎情況
1.2002年獲院青年教師講課比賽三等獎
2.2004年獲院青年教師講課比賽三等獎
3.曾獲「2009年度學生評教個人優秀獎」
4.06年指導合肥工業大學學生創新項目1項,指導學生參加「斛兵杯」大學生課外學術科技作品競賽,獲得三等獎。
5.帶隊參加2009年「紅旗杯全國大學生開源軟件技術競賽」,榮獲「團隊特等獎」的佳績,學生個人也獲得了金獎,銀獎,銅獎等優異成績,本人也榮獲「最佳指導老師」的稱號
學術成果
論著
(1) Jing Yang(#), Liufeng Jiang(*), Kai Xie, Qiqi Chen, Aiguo Wang. Causal Structure Learning Algorithm Based on Partial Rank Correlation under Additive Noise Model. Applied Artificial Intelligence. In press.
(2) Jing Yang(#), Liufeng Jiang(*), Anbo Shen and Aiguo Wang, Online streaming features causal discovery algorithm based on partial rank correlation, Journal of IEEE Transactions on artificial intelligence. In press.
(3) Jing Yang(#), Gaojin Fan(*), Kai Xie, Qiqi Chen, Aiguo Wang,Additive noise model structure learning based on rank correlation,Information Sciences, 2021, 571: 499-526. (JCR 1區,計算機學會(CCF-B)級期刊)
(4) Jing Yang(#), Na Li, Shuai Fang(*), Kui Yu, Yu Chen, Semantic Features Prediction for Pulmonary Nodule Diagnosis Based on Online Streaming Feature Selection, IEEE Access, 2019, 7:61121-61135. (JCR 2區)
(5) Jing Yang(#), Anbo Shen, Kui Yu, Yu Chen, Predicting the Semantic Characteristics of Pulmonary Nodules using Feature Selection Based on Maximum-relevance Minimum-redundancy, 2019 IEEE International Conference on Bioinformatics and Biomedicine Workshop(BIBM』2019), pp.1318-1323, San Diego, CA, USA, 2019.11.18-21. (CCF B)
(6) Jing Yang(#), Gaojin Fan(*), Kai Xie, Qiqi Chen and Aiguo Wang, Additive Noise Model Structure Learning Based on Rank Statistics. 2021 IEEE International Conference on Knowledge Science, Engineering and Management(KSEM』2021) KSEM 2021. Lecture Notes in Computer Science, pp. 128-139, Tokyo, Japan, 2021.8.14-16. (CCF C)
(7) Jing Yang, Gaojin Fan, Anbo Shen and Aiguo Wang, Causal structure learning of nonlinear additive noise model based on streaming feature, 2021 IEEE International Conference on Data Ming Workshop, (ICDM』2021), Auckland, New Zealand, 2021,12.07-10. (CCF B)
(8) Jing Yang(#), Xiaoxue Guo, Ning An(*), Aiguo Wang, Kui Yu, Streaming feature-based causal structure learning algorithm with symmetrical uncertainty, Information Sciences, 2018, 467: 708-724.(JCR1區,計算機學會(CCF-B)級期刊)
(9)Jing Yang(#), Na Li, Ning An(*), Yu Chen, Gil Alterovitz, An efficient causal structure learning algorithm for linear arbitrarily distributed continuous data, The Journal of Supercomputing, 2020, 76,3355-3363.
(10) Jing Yang(#), Ning An(*) and Gil Alterovitz, A Partial Correlation Statistic Structure Learning Algorithm Under Linear Structural Equation Models, IEEE Transactions on Knowledge and Data Engineering(TKDE), 2016, 28(10): 2552-2565.(JCR 2區,計算機學會(CCF-A)級期刊)
(11) Jing Yang(#), Lian Li(*), Aiguo Wang, A partial correlation-based Bayesian network structure learning algorithm under linear SEM, Knowledge-Based Systems(KBS), 2011, 24(7): 963-976. (JCR 2區,計算機學會(CCF-C)級期刊)
(12) Jing Yang(#), Ning An, Kunxia Wang(*), Aiguo Wang, Lian Li, An efficient causal algorithm based on recursive simultaneous equations models for causal structure learning, Chinese Journal of Electronics, 2013, 22(3): 553-557.
(13) Na Li(#), Jing Yang(*), Shuai Fang, Semantic Characteristic Prediction of Pulmonary Nodules Using the Causal Discovery Based on Streaming Features AlgorithmSemantic Characteristic Prediction of Pulmonary Nodules Using the Causal Discovery Based on Streaming Features Algorithm,2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM』2018), pp.1009-1012, Madrid, Spain, 2018.12.03-12.06.(計算機學會(CCF-B)會議)
(14) Jing Yang(#) Ning An, Gil Alterovitz, Lian Li, Aiguo Wang, Causal Discovery based on Healthcare Information, 2013 IEEE International Conference on Bioinformatics and Biomedicine (BIBM』2013), pp.71-73, Shanghai, P.R. China, 2013.12.18-12.21.(計算機學會(CCF-B)會議)
(15) Jing Yang(#), Lian Li(*), A partial correlation-based Bayesian network structure learning algorithm under SEM, Proc. of the 15th Pacific-Asia Conference on Knowledge Discovery and Data Mining(PAKDD』11), pp.63-74, Shenzhen, P.R. China, 2011.5.24-5.27 (計算機學會(CCF-C)級會議)[1]