求真百科歡迎當事人提供第一手真實資料,洗刷冤屈,終結網路霸凌。

張瑞麗檢視原始碼討論檢視歷史

事實揭露 揭密真相
前往: 導覽搜尋
張瑞麗
北京交通大學

張瑞麗,女,北京交通大學副教授。

人物簡歷

教育背景

2009.09-2014.07, 中國科學院數學與系統科學研究院,計算數學所,碩博連讀

2005.09-2009.07,首都師範大學,數學科學學院,本科

工作經歷

2019.01-至今,北京交通大學,副教授

2017. 05-2018.12, 北京交通大學, 講師

2014.09-2017.05, 中國科學技術大學,博士後

2020年1月至2020年3月,訪問柏林工業大學(訪問學者);

中國系統仿真學會仿真算法專業委員會委員、青年工作委員會委員;

《系統仿真學報》青年編委

研究方向

計算理論信息處理

微分方程理論與應用

科研項目

國家自然科學基金面上項目,2023/01-2026/12,70.24萬元,在研,主持

人才基金,2017/10-2019/10,10萬元,已結題,主持

第58批國家博士後科學基金面上項目(二等),2016/01-2017/12,5萬元,已結題,主持

國家自然科學基金青年基金,2016/01-2018/12,25.2萬元,已結題,主持

國家自然科學基金面上項目,2016/01-2019/12,76.8萬元,已結題,參加

科技部國家磁約束核聚變能發展專項,2015/01-2019/12,4000萬元,已結題,參加

教育部中央高校科研業務專項資助,2015/01-2016/12,5萬元,已結題,主持

科技部國家磁約束核聚變能發展專項(人才課題),2014/01-2018/12,240萬元,已結題,參加

[23] L. Brugnano, F. Iavernaro, R. Zhang, Arbitrarily high-order energy-preserving methods for simulating the gyrocenter dynamics of charged particles, Journal of Computational and Applied mathematics, 2020, 380:112994.[1]

參考資料


[22] R. Zhang, H. Qin, J. Xiao, PT-symmetry entails pseudo-Hermiticity regardless of diagonalizability, Journal of Mathematical Physics, 2020, 61: 012101.

[21] R. Zhang, J. Liu, H. Qin, Y. Tang, Energy-preserving algorithm for gyrocenter dynamics of charged particles, Numerical Algorithm, 2019, 81: 1521-1530.

[20] H. Qin, R. Zhang, A.S. Glasser, J. Xiao, Kelvin-Helmholtz instability is the result of parity-time symmetry breaking, Phys. Plasma, 2019, 26: 032102.

[19] R. Zhang, Y. Wang, Y. He, J. Xiao, J. Liu, H. Qin, Y.Tang, Explicit symplectic algorithms based on generating function for relativistic charged particle dynamics in time-dependent electromagnetic field, Phys. Plasma, 2018, 25: 022117.

[18] J. Xiao, H. Qin*, J. Liu, R. Zhang, Local energy conservation law for spatially-discretized Hamiltonian Vlasov-Maxwell system, Phys. Plasma, 2017, 24: 062112.

[17] X. Tu, B. Zhu, Y. Tang, H. Qin, J. Liu* and R. Zhang, A family of new explicit, revertible, volume-preserving numerical schemes for the system of Lorentz force, Phys. Plasma, 2016, 23: 122514.

[16] J. Xiao, H. Qin*, P. Morrison, J. Liu, Z. Yu, R. Zhang, Y. He, Explicit high-order noncanonical symplectic algorithms for ideal two-fluid systems, Phys. Plasma, 2016, 23: 112107.

[15] B. Zhu, Z. Hu, Y. Tang*, R. Zhang, Symmetric and symplectic methods for gyrocenter dynamics in time-independent magnetic fields, International Journal of Modeling, Simulation, and Scientific Computing, 2016(7), 1650008

[14] R. Zhang, H. Qin, Y. Tang, J. Liu, Y. He and J. Xiao, Explicit algorithms based on generating functions for charged particle dynamics, Physical Review E 94, 013205, (2016).

[13] R. Zhang, H. Qin, R. C. Davidson, J. Liu, and J. Xiao, On the structure of the two-stream instability–complex G-Hamiltonian structure and Krein collisions between positive- and negativeaction modes, Phys. Plasma 23, 072111, (2016).

[12] R. Zhang, J. Liu, H. Qin, Y. Tang, Y. He and Y. Wang, Application of Lie algebra in constructing volume-preserving algorithms for charged particles dynamics, Communications in Computational Physics, 19 (2016) 1397-1408.

[11] R. Zhang, Y. Tang, B. Zhu, X. Tu and Y. Zhao, Convergence analysis of the formal energies of symplectic methods for Hamiltonian systems, SCIENCE CHINA Mathematics, 59 (2016) 379-396. [10] Y. He, Y. Sun, R. Zhang, Y. Wang, J. Liu and H. Qin, High order volume-preserving algorithms for relativistic charged particles in general electromagnetic fields, Phys. Plasma 23, 092109 (2016).

[9] B. Zhu, R. Zhang, Y. Tang, X. Tu and Y. Zhao, Splitting K-symplectic methods for non-canonical separable Hamiltonian problems, Journal of Computational Physics 322, 387-399, (2016).

[8] Y. He, H. Qin, Y. Sun, J. Xiao, R. Zhang and J. Liu, Hamiltonian time integrators for Vlasov-Maxwell equations, Phys. Plasmas 22(12), 124503 (2015).

[7] J. Xiao, H. Qin, J. Liu, Y. He, R. Zhang and Y. Sun, Explicit high-order non-canonical symplectic particle-in-cell algorithms for Vlasov-Maxwell systems, Phys. Plasmas 22, 112504 (2015).

[6] H. Qin, J. Liu, J. Xiao, R. Zhang, Y. He, Y. Wang, J. W. Burby, L. Ellison and Y. Zhou, Canonical symplectic particle-in-cell method for long-term large-scale simulations of the Vlasov-Maxwell system, Nuclear Fusion 56(1), 014001, (2015).

[5] H. Qin, Y. He, R. Zhang, J. Liu, J. Xiao and Y. Wang, Comment on 「Hamiltonian splitting for the Vlasov-Maxwell equations」, Journal of Computational Physics 297, 721-723, (2015).

[4] R. Zhang, J. Liu, H. Qin, Y. Wang, Y. He and Y. Sun, Volume-preserving algorithm for secular relativistic dynamics of charged particles, Phys. Plasmas 22, 044501 (2015).

[3] R. Zhang, J. Liu, Y. Tang, H. Qin, J. Xiao and B. Zhu, Canonicalization and symplectic simulation of the gyrocenter dynamics in time-independent magnetic fields, Phys. Plasmas 21, 032504 (2014).

[2] H. Fang, G. lin and R. Zhang, The first-order symplectic Euler method for simulation of GPR wave propagation in pavement structure, IEEE Transaction on geosciences and remote sensing, Vol. 51, No.1, (2013) 93-98.

[1] R. Zhang, J. Huang, Y. Tang and L. Vázquez, Revertible and Symplectic Methods for the Ablowitz-Ladik Discrete Nonlinear Schrodinger Equation, GCMS』11 Proceeding of the 2011 Grand Challenges on Modeling and Simulation Conference, 297-306, (2011).[1]

參考資料