固体电解质查看源代码讨论查看历史
固体电解质 |
固体电解质是应用在冶金中的具有离子导电性的固态物质,它与快离子导体有所不同的是,固体电解质涵盖离子电导率较低的普通固态离子导体。
这些物质或因其晶体中的点缺陷或因其特殊结构而为离子提供快速迁移的通道,在某些温度下具有高的电导率(1~10-6西门子/厘米),故又称为快离子导体。已经发现几十种快离子导体材料,如卤化物中的RbAg4I5、α-AgI是银离子导体,氧化物中的ZrO2(掺杂CaO)、ThO2(掺杂Y2O3)是氧离子导体,β-Al2O3是钠离子导体等。
简介
用途
广泛应用于新型固体电池、高温氧化物燃料电池、电致变色器件和离子传导型传感器件等。也用在记忆装置、显示装置、化学传 感器中,以及在电池中用作电极、电解质等。例如,用固体电解质碘制成的锂-碘电池已用于人工心脏起搏器;以二氧化锆为基质的固体电解质已用于制高温测氧计等。
最新应用
虽然采用钠离子的全固体电池也已经逐渐展开研究,但采用锂离子的全固体电池的研究更加活跃。
在全固体电池的研究中,如何提高表示固体电解质锂的扩散速度的锂离子导电率是个重要课题。在最近的研究中,东京工业大学、丰田汽车公司和高能加速研究机构的研发小组发现了锂离子导电率与有机电解液相当的物质。主导研究的是东京工业大学研究生院综合理工学研究科物质电子化学专业的菅野了次教授。
菅野等人发表的是硫化物类固体电解质的一种--Li10GeP2S12。锂离子导电率在室温(27℃)下非常高,为1.2×10-2S/cm。丰田试制了采用该固体电解质的全固体电池,并于2012年10月公开。丰田证实"实现了原产品5倍"的输出密度。
在本届电池研讨会上,以丰田为首,出光兴产公司、三井金属矿业公司、村田制作所、三星横滨研究所及住友化学公司等也发表了论文。
丰田与大阪府立大学的辰巳砂研究室报告了可提高全固体电池寿命的研究成果。通过采用7Li2O·68Li2S·25P2S5,与该公司此前推进研究的75Li2S·25P2S5相比,实现了比较高的容量维持率。双方试制了采用不同固体电解质的全固体电池,以最大4V电压进行充电后,在60℃下保存了1个月,采用7Li2O·68Li2S·25P2S5的电池的反应电阻没有升高,约为当初的0.9倍,维持了86%的放电容量。而采用75Li2S·25P2S5的电池的反应电阻上升至当初的约2.0倍,放电容量维持率降到72%。
丰田称:"7 Li 2O·68Li2S·25P2S5耐水性高,活性物质和固体电解质界面能够稳定。因此可抑制硫化氢的产生量,为电池的长寿命化做出了贡献。"此次的实验是在60℃下实施的,由此可见,在高温时也能抑制电池劣化。
负极材料采用金属磷化物
固体电解质与正极材料的组合备受关注的全固体电池还提出了高容量负极候选。就金属磷化物发表演讲的是大阪府立大学和出光兴产的研发小组注。时下作为高容量负极受到关注的硅和锡虽然容量高,但与锂制成合金时体积变化较大,难以延长寿命。
而金属磷化物的特点是能形成金属微粒子和Li3P。Li3P具有矩阵构造,有望抑制锂与金属微粒子的合金化反应造成的体积变化。另外,Li3P因锂离子导电性高,仅利用活性物质即可构成负极的电极部分。
此次发表的论文中的负极材料采用了磷化锡(Sn4P3)。由该负极材料与Li2S-P2S5类固体电解质及锂铟合金正极构成的试验单元,即使负极电极中不含电解质和导电添加剂也能作为充电电池使用,具备950mAh/g的初期放电量(图10)。与采用Sn4P3、固体电解质和乙炔黑以40:60:6重量比混合的电极复合体的单元相比,电极单位重量的容量约为2倍。
此外,观察充放电前以及初次放电后和充电后的电极发现,虽然出现了100μm级的裂纹,但Sn4P3与固体电解质之间保持了出色的接触界面。大阪府立大学认为,这要得益于Li2S-P2S5类固体电解质的柔软性。
评价
固体电解质电池还广泛用于高温物理化学研究,如用来测定化合物的生成自由焓,溶解自由焓,金属熔体中氧活度及活度影响参数等。用来测定氮、硫、氢的固体电解质电池也正在研究之中。固体电解质的研究和应用已成为60年代以来受到广泛注意并获得迅速发展的一门材料科学分支。[1]