叠加定理查看源代码讨论查看历史
叠加定理是全国科学技术名词审定委员会公布的科技类名词。
在汉字的历史上,人们通常把秦代之前留传下来的篆体文字和象形文字称为“古文字[1]”,而将隶书和之后出现的字体称为“今文字”。因此,“隶变[2]”就成为汉字由古体(古文字)演变为今体(今文字)的分界线。
名词解释
电路的叠加定理(Superposition theorem)指出:对于一个线性系统,一个含多个独立源的双边线性电路的任何支路的响应(电压或电流),等于每个独立源单独作用时的响应的代数和,此时所有其他独立源被替换成他们各自的阻抗。
为了确定每个独立源的作用,所有的其他电源的必须“关闭”(置零):
在所有其他独立电压源处用短路代替(从而消除电势差,即令V = 0;理想电压源的内部阻抗为零(短路))。
在所有其他独立电流源处用开路代替 (从而消除电流,即令I = 0;理想的电流源的内部阻抗为无穷大(开路))。
依次对每个电源进行以上步骤,然后将所得的响应相加以确定电路的真实操作。所得到的电路操作是不同电压源和电流源的叠加。
叠加定理在电路分析中非常重要。它可以用来将任何电路转换为诺顿等效电路或戴维南等效电路。
该定理适用于由独立源、受控源、无源器件(电阻器、电感、电容)和变压器组成的线性网络(时变或静态)。
应该注意的另一点是,叠加仅适用于电压和电流,而不适用于电功率。换句话说,其他每个电源单独作用的功率之和并不是真正消耗的功率。要计算电功率,我们应该先用叠加定理得到各线性元件的电压和电流,然后计算出倍增的电压和电流的总和。
戴维南定理
戴维南定理(Thevenin's theorem)又称等效电压源定律,是由法国科学家L·C·戴维南于1883年提出的一个电学定理。由于早在1853年,亥姆霍兹也提出过本定理,所以又称亥姆霍兹-戴维南定理。其内容是:一个含有独立电压源、独立电流源及电阻的线性网络的两端,就其外部型态而言,在电学上可以用一个独立电压源V和一个松弛二端网络的串联电阻组合来等效。在单频交流系统中,此定理不仅适用于电阻,也适用于广义的阻抗。
此定理陈述出一个具有电压源及电阻的电路可以被转换成戴维南等效电路,这是用于电路分析的简化技巧。戴维南等效电路对于电源供应器及电池(里面包含一个代表内阻抗的电阻及一个代表电动势的电压源)来说是一个很好的等效模型,此电路包含了一个理想的电压源串联一个理想的电阻。
诺顿定理
诺顿定理(Norton's theorem)指的是一个由电压源及电阻所组成的具有两个端点的电路系统,都可以在电路上等效于由一个理想电流源I与一个电阻R并联的电路。对于单频的交流系统,此定理不只适用于电阻,亦可适用于广义的阻抗。诺顿等效电路是用来描述线性电源与阻抗在某个频率下的等效电路,此等效电路是由一个理想电流源与一个理想阻抗并联所组成的。
诺顿定理是戴维宁定理的一个延伸,于1926年由两人分别提出,他们分别是西门子公司研究员汉斯·梅耶尔(1895年-1980年)及贝尔实验室工程师爱德华·劳笠·诺顿(1898-1983)。实际上梅耶尔是两人中唯一有在这课题上发表过论文的人,但诺顿只在贝尔实验室内部用的一份技术报告上提及过他的发现。
参考文献
- ↑ 什么是古文字,古文字是如何识别出来的,搜狐,2021-03-26
- ↑ 隶变,变什么了?,搜狐,2021-05-06