解析幾何
解析幾何(英語:Analytic geometry),又稱為坐標幾何(英語:Coordinate geometry)或卡氏幾何(英語:Cartesian geometry),早先被叫作笛卡爾幾何,是一種藉助於解析式進行圖形研究的幾何學分支。解析幾何通常使用二維的平面直角坐標系研究直線、圓、圓錐曲線、擺線、星形線等各種一般平面曲線,使用三維的空間直角坐標系來研究平面、球等各種一般空間曲面,同時研究它們的方程,並定義一些圖形的概念和參數。
在中學課本中,解析幾何被簡單地解釋為:採用數值的方法來定義幾何形狀,並從中提取數值的信息。然而,這種數值的輸出可能是一個方程或者是一種幾何形狀。
1637年,笛卡爾在《方法論》的附錄「幾何」中提出了解析幾何的基本方法[1]。以哲學觀點寫成的這部法語著作為後來牛頓和萊布尼茨各自提出微積分學提供了基礎。
對代數幾何學者來說,解析幾何也指(實或者復)流形,或者更廣義地通過一些復變量(或實變量)的解析函數為零而定義的解析空間理論。這一理論非常接近代數幾何,特別是通過讓-皮埃爾·塞爾在《代數幾何和解析幾何》領域的工作。這是一個比代數幾何更大的領域,不過也可以使用類似的方法。
目錄
歷史
古希臘數學家梅內克繆斯(Menaechmus)的解題、證明方式與現在使用坐標系十分相似,以至於有時會認為他是解析幾何的鼻祖。阿波羅尼奧斯在《論切觸》中解題方式在現在被稱之為單維解析幾何;他使用直線來求得一點與其它點之間的比例。阿波羅尼奧斯在《圓錐曲線論》[2]中進一步發展了這種方式,這種方式與解析幾何十分相似,比起笛卡兒早了1800多年。他使用了參照線、直徑、切線與現進所使用坐標系沒有本質區別,即從切點沿直徑所量的距離為橫坐標,而與切線平行、並與數軸和曲線向交的線段為縱坐標。他進一步發展了橫坐標與縱坐標之間的關係,即兩者等同於誇張的曲線。然而,阿波羅尼奧斯的工作接近於解析幾何,但它沒能完成它,因為他沒有將負數納入系統當中。在此,方程是由曲線來確定的,而曲線不是由方程得出的。坐標、變量、方程不過是一些給定幾何題的腳註罷了。
十一世紀波斯帝國數學家歐瑪爾·海亞姆發現了幾何與代數之間的密切聯繫,在求三次方程使用了代數和幾何,取得了巨大進步。但最關鍵的一步由笛卡兒完成。
視頻
解析幾何 相關視頻
參考文獻
- ↑ 笛卡爾與解析幾何,簡書,2017-12-11
- ↑ 專欄 | 阿波羅尼奧斯的《圓錐曲線論》,新浪網,2019-12-20