引力透鏡
引力透鏡,引力場源對位於其後的天體發出的電磁輻射所產生的會聚或多重成像效應[1]。因類似凸透鏡的匯聚效應,因而得名。引力透鏡效應是阿爾伯特·愛因斯坦的廣義相對論所預言的一種現象,由於時空在大質量天體附近會發生畸變,使光線在大質量天體附近發生彎曲(光線沿彎曲空間的短程線傳播)。如果在觀測者到光源的視線上有一個大質量的前景天體則在光源的兩側會形成兩個像,就好像有一面透鏡放在觀測者和天體之間一樣,這種現象稱之為引力透鏡效應。對引力透鏡效應的觀測證明阿爾伯特·愛因斯坦的廣義相對論確實是引力的正確描述。
目錄
簡介
有些情況下,起引力透鏡作用的天體是一個星系,它對光的彎曲作用能產生類星體或其他星系等更遙遠天體的多重像。有些天文學家認為,多達2/3的已知類星體可能由於引力透鏡效應而增加了亮度。研究引力透鏡對遙遠類星體光線的影響,有助於解決關於宇宙年齡和宇宙當前膨脹速率的爭論。
當銀河系中一個暗天體正好在一較遠恆星(如麥哲倫星雲中的一顆恆星)前經過,使得它的像短暫增亮,就是較小規模的引力透鏡效應。單個恆星造成的這種引力透鏡有時叫做「微透鏡(Microlensing)」。1979年,天文學家觀測到類星體Q0597+561發出的光在它前方的一個星系的引力作用下彎曲,形成了一個一模一樣的類星體的像[2]。這是第一次觀察到引力透鏡效應。1993年,天文學家利用微透鏡效應觀測到銀河系中存在一種暗物質(dark matter),稱做MACHOs(massive compact halo objects,緻密暗天體)。
現象
引力透鏡可以增亮背景天體,從另一方面說,背景天體也可以起個手電筒的作用把中間天體給「照亮」,大家可能有概念,星系和星系團的質量大部分是暗物質提供的,暗物質雖然不發光,但它的引力作用和我們常見的物質是一樣的,所以通過分析引力透鏡(尤其是引力透鏡弧)我們就能探知所有物質的質量分布,並非常準確地測量星系團等的質量。這種測質量的方法的優越性是不言而喻的: 不必做太多假設就能把所有物質的質量全包括進來。並且這一點對我們探測非常遙遠的天體和事件非常有利,包括高紅移的星系,類星體,伽瑪射線等等。它們發出的光線在穿越時空到達我們之前的漫漫長旅中,可能會在中間遇到星系或星系團,星系或星系團做為透鏡使得背景天體成了像。在這種情況下像可以有多個,有些像是增亮了,為我們研究背景天體和上百億年前的宇宙提供了機會。屬於不同像的光線偏折程度不盡相同,所以它們實際走過的距離是不一樣的,所以如果背景天體由於某種原因發生光變,幾個像之間的光變就有早有晚,通過分析這些像和時間延遲,我們還能得到對宇宙學的一些參數(比如哈勃常數)的限制。
應用
前面提到的都算比較強的引力透鏡現象了,實際上還有一種叫弱引力透鏡現象。弱的意思就是表現不出前面說的好幾個像,背景天體也基本上沒被增亮多少,就象是在沒引力場的情況下加了一點擾動。但是背景天體的形狀被稍稍拉長了一點點(專業術語叫切變),比如一個原本投影是圓的星系被稍微拉扁了一點兒。由於這種效應實在是太小了,而且星系本身也有圓有扁,所以我們要從大量的數據中做統計分析。這種分析能告訴我們星系裡物質(包括暗物質)是怎麼分布的,宇宙中物質分布起伏如何等等,還能對一些宇宙學參數給出限制。這對於我們研究宇宙密度的擾動譜和結構形成很有用。
視頻
引力透鏡 相關視頻
參考文獻
- ↑ 引力透鏡是什麼?為什麼通過它可以觀察早期宇宙? ,搜狐,2019-05-01
- ↑ 中國科學家解開引力與反引力之謎,否定磁場有南北極,個人圖書館,2009-11-16