布拉格定律
在物理学中,布拉格定律给出晶格[1] 的相干及不相干散射角度。当X射线入射于原子时,跟任何电磁波一样,它们会使电子云移动。电荷的运动把波动以同样的频率再发射出去(会因其他各种效应而变得有点模糊);这种现象叫瑞利散射(或弹性散射)。散射出来的波可以再相互散射,但这种进级散射在这里是可以忽略的。当中子波与原子核或不成对电子的相干自旋进行相互作用时,会发生一种与上述电磁波相近的过程。这些被重新发射出来的波来相互干涉,可能是相长的,也可能是相消的(重叠的波某程度上会加起来产生更强的波峰,或相互消抵),在探测器或底片上产生绕射图样。而所产生的波干涉图样就是绕射分析的基本部份。这种解析叫布拉格绕射。
布拉格绕射(又称X射线绕射的布拉格形式),最早由威廉·劳伦斯·布拉格及威廉·亨利·布拉格于1913年提出,他们早前发现了固体在反射X射线后产生的晶体线(与其他物态不同,例如液体),而这项定律正好解释了这样一种效应。他们发现,这些晶体在特定的波长及入射角时,反射出来的辐射会形成集中的波峰(叫布拉格尖峰)。布拉格绕射这个概念同样适用于中子绕射及电子绕射 。中子及X射线的波长都于原子间距离(~150 pm)相若,因此它们很适合在这种长度作“探针”之用。
威廉·劳伦斯·布拉格使用了一个模型来解释这个结果,模型中晶体为一组各自分离的平行平面,相邻平面间的距离皆为一常数d。他的解释是,如果各平面反射出来的X射线成相长干涉的话,那么入射的X射线经晶体反射后会产生布拉格尖峰。当相位差为2π及其倍数时,干涉为相长的;这个条件可经由布拉格定律表示。
其中n为整数,λ为入射波的波长,d为原子晶格内的平面间距,而θ则为入射波与散射平面间的夹角。注意移动中的粒子,包括电子、质子和中子,都有对应其速度及质量的德布罗意波长。
布拉格定律由物理学家威廉·劳伦斯·布拉格爵士于1912年推导出来,并于1912年11月11日首度于剑桥哲学会中发表。尽管很简单,布拉格定律确立了粒子在原子大小下的存在,同时亦为晶体研究了提供了有效的新工具──X射线及中子绕射。威廉·劳伦斯·布拉格及其父,威廉·亨利·布拉格爵士获授1915年诺贝尔物理学奖,原因为晶体结构测定的研究,他们测定了氯化钠、硫化锌及钻石的结构。 他们是唯一一队同时获奖的父子队伍,而威廉·劳伦斯·布拉格时年25岁,因此成了最年轻的诺贝尔奖得主。
目录
布拉格条件
当电磁辐射或亚原子粒子波的波长,与进入的晶体样本的原子间距长度相若时,就会产生布拉格绕射,入射物会被系统中的原子以镜面形式散射出去,并会按照布拉格定律所示,进行相长干涉。对于晶质固体,波被晶格平面所散射,各相邻平面间的距离为d。当被各平面散射出去的波进行相长干涉时,它们的相位依然相同,因此每一波的路径长度皆为波长的整数倍。进行相长干涉两波的路径差为f=2d\sin\theta,其中f=\theta为散射角。由此可得布拉格定律,它所描述的是晶格中相邻晶体平面(由米勒指数h、k及l 标记),产生相长干涉的条件。
其中n为整数,按各项参数大小而定,而λ则为波长。通过量度散射后入射波的强度,并将之表示成入射角的函数,可得干涉图样。在干涉图样中,当散射波满足布拉格条件,就会产生非常强的强度,它们叫布拉格尖峰。
倒空间
尽管很多人都以为布拉格定律量度的是实空间中的原子距离,但事实并不是这样的。在布拉格实验中,只有在量度的距离与晶格图中的d成反比时,第一陈述才似乎会是正确的。而且,从布拉格定律的 n\lambda项,可以看出定律量度两排原子间到底能放多少个波长,因此它所量度的是倒距离。倒晶格向量描述的是某组晶格平面,它是这组平面的法向量,其长度为 G = 2\pi / d。马克斯·冯·劳厄用向量形式正确地诠释了倒晶格向量,并得出以他命名的劳厄方程式:
- vec G\ =\ \vec{k_f}\ -\ \vec{k_i}
其中vec G为倒晶格向量,而vec{k_f}</math>及<math>\vec{k_i}为入射及绕射束的波向量。
弹性散射条件|k_f| = |k_i|,及散射角2 \theta与上式结合后,基本上与布拉格方程等效。这是因为动量转移守恒的缘故。在这个系统中,其扫掠变量可以是长度、入射方向或出射波向量,其中波向量与系统中的能量及角度弥散有关。绕射角与Q空间的关系可用一简单的式子表示:
- Q = \frac {4 \pi \sin \left ( \theta \right )}{\lambda}。
胶体晶体的布拉格可见光散射
胶体晶体|Colloidal crystal为一种非常有序|Order and disorder (physics)的粒子阵列,可以在大范围内形成(长度从几微米到几毫米不等),而且可被看作原子及分子晶体的类比。球状粒子的周期性阵列,会形成出相似的空隙阵列,而这种阵列可被用作可见光的绕射光栅,尤其是当空隙与入射波长为同一数量级的时候。
因此,科学家们在很多年前就发现了,由于相斥库仑相互作用的关系,水溶液中的带电荷高分子,会表现出大范围的类晶体相互关联,当中粒子间距一般会比粒子直径要大得多。在自然的所有这种例子中,都可到看到一样的漂亮构造色(或晃动的色彩),这都可以归功于可见光波的相长干涉,而此时光波会满足布拉格条件,跟结晶固体的X射线绕射类似。
选择定则与实验晶体学
就跟上文提过的那样,布拉格定律可用于计算某立方晶系的晶格间距,关系式如下:
- d = \frac{a}{ \sqrt{h^2 + k^2 + l^2}}
其中a为立方晶体的晶格间距,而h、k及l则为布拉格平面的密勒指数,将上式与布拉格定律结合可得:
- left( \frac{ \lambda\ }{ 2a } \right)^2 = \frac{ \sin ^2 \theta\ }{ h^2 + k^2 + l^2 }
另一种推导
设一单色波(任何种类),进入一组对齐的平面晶格点,其平面间距为d,入射角为theta,如右图所示。波被晶格点A反射后会沿AC'行进,而没有被反射的波则沿AB继续行进,被晶格点B反射后路径为BC。AC'与BC间存在路径差,表达式为
- (AB+BC) - (AC')。
只有在路径差等于波长的整数倍时,这两股分开的波,在到达某一点时,会是同相位的,才会因此产生相长干涉,故相长干涉的产生条件为
- (AB+BC) - (AC') = n\lambda(需要为C'下定义)
其中n与lambda的定义同上。
- AB=BC=\frac{d}{\sin\theta} 且 AC=\frac{2d}{\tan\theta},
由此可得,
- AC'=AC\cdot\cos\theta=\frac{2d}{\tan\theta}\cos\theta=\left(\frac{2d}{\sin\theta}\cos\theta\right)\cos\theta=\frac{2d}{\sin\theta}\cos^2\theta。
组合上述各式,得
- n\lambda=\frac{2d}{\sin\theta}(1-\cos^2\theta)=\frac{2d}{\sin\theta}\sin^2\theta
简化后可得:
- n\lambda=2d\sin\theta
即布拉格定律。