求真百科欢迎当事人提供第一手真实资料,洗刷冤屈,终结网路霸凌。

盖尔曼查看源代码讨论查看历史

事实揭露 揭密真相
跳转至: 导航搜索
默里·盖尔曼
[http://news.cnhubei.com/ctdsb/ctdsbsgk/ctdsb39/201005/W020100510317909349003.jpg http://news.cnhubei.com/ctdsb/ctdsbsgk/ctdsb39/201005/t1142103.shtml 原图链接]
原文名 Murray Gell-Mann
出生 1929年09月15日
职业 物理学家
知名作品

提出了质子和中子由三个夸克组成

获1969年诺贝尔物理学奖

默里·盖尔曼(Murray Gell-Mann)1929年09月15日出生于美国纽约的一个犹太家庭里。童年时就对科学有浓厚兴趣,少年才俊,14岁从进入耶鲁大学,1948年获学士学位,继转麻省理工学院,三年后获博士学位,年仅22岁。1951年盖尔曼到普林斯顿大学高等研究所工作。1953年到芝加哥大学当讲师.参加到以费米为核心的研究集体之中,1955年盖尔曼到加州理工学院当理论物理学副教授,年后升正教授,成为加州理工学院最年轻的终身教授。

默里·盖尔曼一美国物理学家,提出了质子和中子是由三个夸克组成的,并因此获得了诺贝尔物理学奖。

人物经历

人们说他有“五个大脑”,遗传运算法则创始人约翰·赫兰(麦克阿瑟天才奖获得者)称他是“真正的天才”,1977年诺贝尔物理学奖获得者菲利普·安德森曾评价他“现存的在广泛的领域里拥有最深刻学问的人”,1979年诺贝尔物理奖获得者斯蒂文·温伯格说他“从考古到仙人掌再到非洲约鲁巴人的传说再到发酵学,他懂得都比你多”。

1929年生于纽约的一个犹太家庭,父亲曾就读于维也纳大学和海德堡大学,移民美国后管理着一个语言学校,“他是来自解体前的奥匈帝国的移民,但说着无可挑剔的英语,并在语言上也这样苛求我”,盖尔曼后来回忆到。就在他出生前几周,美国大萧条时期降临,所以童年时他的家庭一直很拮据。童年的盖尔曼兴趣十分广泛,很早就成为街区里有名的神童——他的同学认为他是“会走路的大百科全书”。到14岁时,他考虑申请到耶鲁大学,父亲问他想学什么,“我回答说‘只要跟考古或语言学相关就好,要不然就是自然史或勘探’,父亲的第一反应是‘你会饿死的’”。时值1944年,战争时期的美国经济状况并不理想,他的父亲强烈建议他学“工程”,然而讽刺的是,在经过能力测试后盖尔曼被认为适合学习“除了‘工程’以外的一切学科”。于是他父亲建议:“我们干吗不折中一下,学物理呢?”正是这个“意外事件”造就了后来的夸克理论提出者、1969年诺贝尔物理学奖获得者和“统治基本粒子领域20年的皇帝”(格拉肖语)。

年轻有为

从耶鲁大学毕业后,不到22岁的盖尔曼在麻省理工学院获得博士学位,随后被“原子弹之父”奥本海默带到爱因斯坦时代的普林斯顿高等研究所做博士后,期间曾在费米领导的芝加哥大学物理系授课并被提升为副教授。1955年盖尔曼在博士后研究结束后由于“奇异数”的发现曾有机会去芝加哥大学任教,“可惜费米前一年死了”,也曾想去丹麦的波尔研究所,“可惜他们没有博士后制度而只让我做教师或学生”,所以最好的选择是去加州理工学院,“那里有费曼”。就这样,盖尔曼不到26岁就成为加州理工学院最年轻的终身教授。

获诺贝尔奖

从盖尔曼的奇异数发现到获得诺贝尔物理学奖,他的历程可以用渐入佳境来形容:24岁发现了基本粒子的一个新量子数——奇异数,28岁建立了正确描述弱相互作用的V-A理论,32岁提出了强子分类的八正法(相当于介子和重子的门捷列夫周期表),35岁创立了夸克模型(quark),40岁荣获诺贝尔物理学奖。这些重大理论突破中的每一项也曾由别人独立地提出过,但只有盖尔曼一人对所有发现都有原创性的贡献。其中夸克模型(预言中子、质子这类亚原子粒子是由更基本的单元——夸克组成的。“夸克”是构成宇宙中几乎一切物质的亚微粒子)是与G.茨威格各自独立提出的。“夸克”这一名字是盖尔曼所取,来自他少年时读过的詹姆斯·乔伊斯的小说尼根的小说《芬尼根的苏醒》(Finnegan\'sWake)中的诗句。

研究成果

奇异数守恒定律

纵观粒子物理学的百年发展史,可谓群星璀璨,英才辈出。默里·盖尔曼就是其中极富传奇色彩的人物之一,曾经主宰粒子物理的走向长达十余年。他深邃的洞察力与旺盛的创造力使同时代的许多物理学家黯然失色。他对基本粒子物理学的重要贡献极大地加深了人类对微观世界的了解。

盖尔曼作为一位理论物理学家第一次单独开展研究的是:怎样解释不按物理学家预料的方式运动的某些怪异的宇宙射线。50年代前,质量处于质子和电子间的介子不断被发现,再后来又发现了超子。这些奇异粒子的奇异性表现在:产生的快,消失得慢,有些介子的寿命比当时得到公认的理论所预言要长得多;并且成对出现。盖尔曼下工夫理出头绪来,他把奇异粒子按电荷、同位旋进行整理,发现通常费米子的同位旋为1/2,如核子具有二重态:中子和质子。而同为费米子的超子Σ的同位旋是1,呈现三重态,而不是双重态,并且可带正电、负电,或者不带电。这样的同位旋值对费米子而言是奇异的,这正是问题的关键所在。同样对第二种奇异粒子,即中等质量的K介子,是兀介子的同类粒子。但是K介子也不像其他的正常的玻色子一样呈三重态,而是双重态,同位旋是1/2。因此,盖尔曼认为应再给予粒子一个新量子数称之为奇异数。不同的粒子具有不同的奇异数,例如,0,土1,土2,……。他还提出奇异数守恒定律,这个定律是说在描述强相互作用或电磁相互作用时,方程两侧总的奇异数必须守恒。奇异数守恒定律为后来1955年盖尔曼提出的协同产生理论提供了重要的理论基础。所谓的协同产生理论认为,由强力产生的奇异粒子只能同时成对地产生。当这些成对的粒子离开它的对手时,通过强相互作用衰变所需的能量就会超过原先产生它们所投入的能量,因此只好经弱相互作用衰变,从而获得了更长的寿命,于是这一模型理论对长寿命作出了解释。奇异数在弱相互作用衰变时不守恒。

SU(3)对称性

1961年盖尔曼在奇异数守恒定律的基础上,又提出了SU(3)对称性。对强相互作用的粒子进一步作出分类。效仿佛教的“八正道”(即“正见、正思维、正语、正业、正命、正精进、正念、正定”),1962年盖尔曼和以色列物理学家内曼(Y. Neemann)独立地提出了“八正法”的分类方法。他们假设,八个质量最小的重子;两个核子、三个Σ超子、两个E超子及一个∧超子,构成一个“超多重态”。这八个重子,自旋都是1/2,宇称均为正值,质量相近。只是电荷不同、同位旋不同、奇异数不同。因此可以画一个超荷Y和同位旋分量I3的坐标图,二重态、三重态和单态可以排成一个整齐的六边形列阵。

盖尔曼打算用八正方法把所有新的粒子和新的量子数都综合进来。按照这一方法,还可以把当时已知的九个重子共振态排列成对称的图形。从这张图形的对称性考虑,似乎缺少了一个粒子,这个粒子的特性可以从图形的对称性推出。1962年盖尔曼在欧洲核予研究中心的会议上提出这个失踪的粒子应该具有电荷为一1,奇异数为一3,质量为1680兆电子伏,自旋为3/2,字称为正值。1964年果然发现了Ω粒子正是这个失踪的粒子。(如图2),这样就对盖尔曼的八正方法作出了有力的支持。

强子的夸克模型

1964年盖尔曼进一步提出了强子的夸克模型。SU(3)对称性的八重态似乎暗示由更基础的三重态构成。他认为质子之类的粒子是由更基本的夸克组成。夸克与所有已知的亚原子粒子不同,它们带有分数电荷,例如:+2/3或一1/3。夸克都是两两成对、或三三成群,永远不可能单独地被观测到。它们之间的结合是靠交换胶子。这就是著名的夸克模型。胶子就相当于夸克间相互作用的量子。它们的作用和电磁相互作用中的光量子一样。盖尔曼提出有三种夸克:两种同位旋为1/2,另一种同位旋为0。在同位旋为1/2的两种中,同位旋向上的,称为上夸克;同位旋向下的,称为下夸克;同位旋为零的则称为奇异夸克。奇异夸克带有奇异数。夸克理论后来因实验事实的补充而不断发展。1974年丁肇中和垦克特(BRichter)发现J/ψ粒子。原有的夸克理论已无法解释新的实验事实,因此有人引入了第四种夸克——粲夸克。粲夸克带有新的量子数——粲数。1977年发现了重轻子,1978年又发现了γ粒子,促使人们相信还存在第五种夸克和第六种夸克。第五种夸克称为底夸克。第六种夸克称为顶夸克。每种夸克都有红、绿、蓝三色。

盖尔曼一直是粒子物理学的开路先锋。1969年他获得诺贝尔物理学奖,他在诺贝尔奖颁奖庆典上致词说:“对于我,研究那些法则是与对表现千差万别的自然界的热爱不可分的。自然科学基本法则的美,正如粒子和宇宙的研究所揭示的,在我看来,是与跳到纯净的瑞典湖泊中的野鸭的柔软性相关的……”正是出于对大自然的这种热爱引领他去发现微观世界的秩序。研究世界的复杂性。

创立圣菲研究所'

在获得诺贝尔奖约15年后。他掉转了方向,发起创建了圣菲研究所,成了世界研究复杂性理论的中心之一。盖尔曼因自己对简单世界的洞察力而闻名,八正法完美的规律性产生了所有不同质量的粒子,粒子又进而形成原子核、原子和分子。正是由这些完美的物质基元——夸克和轻子,构成了高度复杂而个性独立的世界。美籍华裔作家施加彰(ArthurSze)送他一本新出版的诗集中有两句诗打动了默里:“夸克世界中,万事都与一只在夜间徘徊的美洲豹有关。”诗句似乎完善地表达了简单性如何导致复杂性的奥秘,以及精确的物理定律如何产生有意识的生物。盖尔曼给他一本揭示复杂性的新书起名《夸克与美洲豹》,1994年出版后大受欢迎。

研究贡献

20世纪60年代,美国物理学家默里·盖尔曼和G.茨威格各自独立提出了中子、质子这一类强子是由更基本的单元——夸克(quark)组成的,很多中国物理学家称其为“层子”。它们具有分数电荷,是电子电量的2/3或-1/3倍,自旋为1/2.夸克一词是盖尔曼取自J·乔埃斯的小说《芬尼根彻夜祭》的词句“为马克检阅者王,三声夸克”.夸克在该书中具有多种含义,其中之一是一种海鸟的叫声.他认为,这适合他最初认为“基本粒子不基本、基本电荷非整数”的奇特想法,同时他也指出这只是一个笑话,这是对矫饰的科学语言的反抗.另外,也可能是他喜欢鸟类的原因.

最初解释强相互作用粒子的理论需要三种夸克,叫做夸克的三种味,它们分别是上夸克(up,u)、下夸克(down,d)和奇异夸克(strange,s)。1974年发现了J/ψ粒子,要求引入第四种夸克粲夸克(魅夸克)(charm,c)。1977年发现了Υ粒子,要求引入第五种夸克底夸克(bottom,b)。1994年发现第六种夸克顶夸克(top,t),人们相信这是最后一种夸克。

夸克理论认为,所有的重子都是由三个夸克组成的,反重子则是由三个相应的反夸克组成的。比如质子(uud),中子(udd)。夸克理论还预言了存在一种由三个奇异夸克组成的粒子(sss),这种粒子于1964年在氢气泡室中观测到,叫做负ω粒子。

夸克按其特性分为三代,如下表所示:

符号 中文名称 英文名称 电荷(e) 质量(GeV/c^2)

u 上夸克 up +2/3 0.004

d 下夸克 down -1/3 0.008

c 粲(魅)夸克 charm +2/3 1.5

s 奇夸克 strange -1/3 0.15

t 顶夸克 top +2/3 176

b 底夸克 bottom -1/3 4.7

在量子色动力学中,夸克除了具有“味”的特性外,还具有三种“色”的特性,分别是红、绿和蓝。这里“色”并非指夸克真的具有颜色,而是借“色”这一词形象地比喻夸克本身的一种物理属性。量子色动力学认为,一般物质是没有“色”的,组成重子的三种夸克的“颜色”分别为红、绿和蓝,因此叠加在一起就成了无色的。因此计入6种味和3种色的属性,共有18种夸克,另有它们对应的18种反夸克。

夸克理论还认为,介子是由同色的一个夸克和一个反夸克组成的束缚态。例如,日本物理学家汤川秀树预言的π+介子是由一个上夸克和一个反下夸克组成的,π-介子则是由一个反上夸克和一个下夸克组成的,它们都是无色的。

除顶夸克外的五种夸克已经通过实验发现它们的存在,华裔科学家丁肇中便因发现粲夸克而获诺贝尔物理学奖。近十年来高能粒子物理学家的主攻方向之一是顶夸克 (t)。

至于1994年最新发现的第六种“顶夸克”,相信是最后一种,它的发现令科学家得出有关夸克子的完整图像,有助研究在宇宙大爆炸之初少于一秒之内宇宙如何演化,因为大爆炸最初产生的高热,会产生顶夸粒子。

研究显示,有些恒星在演化末期可能会变成“夸克星”。当星体抵受不住自身的万有引力不断收缩时,密度大增会把夸克挤出来,最终一个太阳大小的星体可能会萎缩到只有七、八公里那么大,但仍会发光。

夸克理论认为,夸克都是被囚禁在粒子内部的,不存在单独的夸克。一些人据此提出反对意见,认为夸克不是真实存在的。然而夸克理论做出的几乎所有预言都与实验测量符合的很好,因此大部分研究者相信夸克理论是正确的。

1997年,俄国物理学家戴阿科诺夫等人预测,存在一种由五个夸克组成的粒子,质量比氢原子大50%。2001年,日本物理学家在SP环-8加速器上用伽马射线轰击一片塑料时,发现了五夸克粒子存在的证据。随后得到了美国托马斯·杰裴逊国家加速器实验室和莫斯科理论和实验物理研究所的物理学家们的证实。这种五夸克粒子是由2个上夸克、2个下夸克和一个反奇异夸克组成的,它并不违背粒子物理的标准模型。这是第一次发现多于3个夸克组成的粒子。研究人员认为,这种粒子可能仅是“五夸克”粒子家族中第一个被发现的成员,还有可能存在由4个或6个夸克组成的粒子。

修正一下:有人说什么发现某某夸克,完全是不懂科学乱杜撰,人类只是大胆假设,科学求证,夸克是为了解释一些目前人类无法解释的现象而提出的可能存在的假设,但人类一直没找到夸克存在的直接证据.

1996年12月2日,《科技日报》发表了崔君达教授反驳何祚庥院士的文章《复合时空论并非病态科学》。崔在文中进一步指出:"物理学界并非全都公认夸克的存在。不同意见早在70年代就有了。我国物理学家朱洪元,诺贝尔奖得主、量子力学奠基人海德堡都认为:全世界许许多多物理学家花了那么大的力量寻找夸克,如果夸克真的存在,早就应该找到了。

这位科学家如此否认夸克当然也不对,像那句"如果夸克真的存在,早就应该找到了。"显然是谬论,就等于说"如果癌症真的存在,早就应该治好了一样" 总之科学来不得半点虚假与情绪化,夸克不能直接证明它存在,也不能证明(哪怕间接)它不存在,它目前只是种假设.

圣塔菲研究所

SFI被称作是“没有围墙的研究所”,位于美国新墨西哥圣塔菲城,1984年在盖尔曼的倡议下与诺贝尔物理学奖得主安德逊(PhilipAnderson)和诺贝尔经济学奖获得者阿罗(KennethArrow)等人的支持下创立,该所把复杂性作为研究的中心议题,旨在世界范围内传播对复杂理论的多学科研究。2005年暑假SFI曾与中国科学院理论物理研究所、数学与系统科学研究院以及中国科学院研究生院成功的合作在京举办了“2005年复杂系统暑期学校”,吸引了不少来自世界各地对此方向感兴趣的一流学员。