方差查看源代码讨论查看历史
方差 |
方差(Variance),应用数学里的专有名词。在概率论和统计学中,一个随机变量的方差描述的是它的离散程度,也就是该变量离其期望值的距离。一个实随机变量的方差也称为它的二阶矩或二阶中心动差,恰巧也是它的二阶累积量。方差的算术平方根称为该随机变量的标准差。
简介
方差是各个数据与其算术平均数的离差平方和的平均数,通常以σ2表示。方差的计量单位和量纲不便于从经济意义上进行解释,所以实际统计工作中多用方差的算术平方根——标准差来测度统计数据的差异程度。方差和标准差是测度数据变异程度的最重要、最常用的指标。
标准差又称均方差,一般用σ表示。方差和标准差的计算也分为简单平均法和加权平均法,另外,对于总体数据和样本数据,公式略有不同。
方差是各个数据与平均数之差的平方的平均数 比如1.2.3.4.5 这五个数的平均数是3 ,所以这五个数的方差就是 1/5[(1-3)²+(2-3)²+(3-3)²+(4-3)²+(5-3)²]=2
1/n[(x1-x平均数)²+(x2-x平均数)²…………+(xn-x平均数)²]
评价
设X是一个随机变量,若E{[X-E(X)]² }存在,则称E{[X-E(X)]²}为X的方差,记为D(X),Var(X)或DX。
即D(X)=E{[X-E(X)]^2}称为方差,而σ(X)=D(X)^0.5(与X有相同的量纲)称为标准差(或均方差)。即用来衡量一组数据的离散程度的统计量。
方差刻画了随机变量的取值对于其数学期望的离散程度。(标准差.方差越大,离散程度越大。否则,反之)
若X的取值比较集中,则方差D(X)较小
若X的取值比较分散,则方差D(X)较大。
因此,D(X)是刻画X取值分散程度的一个量,它是衡量X取值分散程度的一个尺度。[1]