求真百科歡迎當事人提供第一手真實資料,洗刷冤屈,終結網路霸凌。

数据链路层查看源代码讨论查看历史

跳转至: 导航搜索
  数据链路层

数据链路层是OSI参考模型中的第二层,介乎于物理层和网络层之间。数据链路层在物理层提供的服务的基础上向网络层提供服务,其最基本的服务是将源自物理层来的数据可靠地传输到相邻节点的目标机网络层。

简介

数据链路层定义了在单个链路上如何传输数据。这些协议与被讨论的各种介质有关。示例:ATM,FDDI等。数据链路层必须具备一系列相应的功能,主要有:如何将数据组合成数据块,在数据链路层中称这种数据块为帧,帧是数据链路层传送单位;如何控制帧在物理信道上的传输,包括如何处理传输差错,如何调节发送速率以使与接收方相匹配;以及在两个网络实体之间提供数据链路通路的建立、维持和释放的管理。物理链路(物理线路):是由传输介质与设备组成的。原始的物理传输线路是指没有采用高层差错控制的基本的物理传输介质与设备。数据链路(逻辑线路):在一条物理线路之上,通过一些规程或协议来控制这些数据的传输,以保证被传输数据的正确性。实现这些规程或协议的硬件和软件加到物理线路,这样就构成了数据链路,从数据发送点到数据接收点所经过的传输途径。当采用复用技术时,一条物理链路上可以有多条数据链路。

评价

数据链路层的最基本的功能是向该层用户提供透明的和可靠的数据传送基本服务。透明性是指该层上传输的数据的内容、格式及编码没有限制,也没有必要解释信息结构的意义;可靠的传输使用户免去对丢失信息、干扰信息及顺序不正确等的担心。在物理层中这些情况都可能发生,在数据链路层中必须用纠错码来检错与纠错。数据链路层是对物理层传输原始比特流的功能的加强,将物理层提供的可能出错的物理连接改造成为逻辑上无差错的数据链路,使之对网络层表现为一无差错的线路。控制字符SOH标志数据帧的起始。实际传输中,SOH前还要以两个或更多个同步字符来确定一帧的起始,有时也允许本帧的头紧接着上帧的尾,此时两帧间就不必再加同步字符。count字段共有14位,用以指示帧中数据段中数据的字节数,14位二进制数的最大值为16383,所以数据最大长度为131064。DDCMP协议就是靠这个字节计数来确定帧的终止位置的。DDCMP帧格式中的ACK、SEG、ADDR及FLAG中的第2位CRC1、CRC2分别对标题部分和数据部分进行双重校验,强调标题部分单独校验的原因是,一旦标题部分中的CONUT字段出错,即失却了帧边界划分的依据。由于采用字符计数方法来确定帧的终止边界不会引起数据及其它信息的混淆,因而不必采用任何措施便可实现数据的透明性(即任何数据均可不受限制地传输)。(2)使用字符填充的首尾定界符法:该法用一些特定的字符来定界一帧的起始与终止,为了不使数据信息位中出现的与特定字符相同的字符被误判为帧的首尾定界符,可以在这种数据字符前填充一个转义控制字(DLE)以示区别,从而达到数据的透明性。但这种方法使用起来比较麻烦,而且所用的特定字符过份依赖于所采用的字符编码集,兼容性比较差。(3)使用比特填充的首尾标志法:该法以一组特定的比特模式来标志一帧的起始与终止。(4)违法编码法:该法在物理层采用特定的比特编码方法时采用。例如,一种被称作曼彻斯特编码的方法,是将数据比特“1”编码成“高-低”电平对,而将数据比特“0”编码成“低-高”电平对。而“高-高”电平对和“低-低”电平对在数据比特中是违法的。可以借用这些违法编码序列来定界帧的起始与终止。局域网IEEE 802标准中就采用了这种方法。违法编码法不需要任何填充技术,便能实现数据的透明性,但它只适用于采用冗余编码的特殊编码环境。由于字节计数法中COUNT字段的脆弱性以及字符填充法实现上的复杂性和不兼容性,较普遍使用的帧同步法是比特填充和违法编码法。[1]

参考文献