核磁共振成像檢視原始碼討論檢視歷史
核磁共振成像是中國科技名詞。
漢字是用於記錄漢語,進行書面交流,傳承民族文化的書寫符號系統[1],也是最富有民族特色的中國書法藝術[2]的載體,是中華民族智慧的結晶,它蘊藏着許許多多的文化內涵。
名詞解釋
核磁共振成像(英語:Nuclear Magnetic Resonance Imaging,簡稱NMRI),又稱自旋成像(英語:spin imaging),也稱磁共振成像(Magnetic Resonance Imaging,簡稱MRI),是利用核磁共振(nuclear magnetic resonance,簡稱NMR)原理,依據所釋放的能量在物質內部不同結構環境中不同的衰減,通過外加梯度磁場檢測所發射出的電磁波,即可得知構成這一物體原子核的位置和種類,據此可以繪製成物體內部的結構圖像。
將這種技術用於人體內部結構的成像,就產生出一種革命性的醫學診斷工具。快速變化的梯度磁場的應用,大大加快了核磁共振成像的速度,使該技術在臨床診斷、科學研究的應用成為現實,極大地推動了醫學、神經生理學和認知神經科學的迅速發展。
從核磁共振現象發現到MRI技術成熟這幾十年期間,有關核磁共振的研究領域曾在三個領域(物理學、化學、生理學或醫學)內獲得了6次諾貝爾獎,足以說明此領域及其衍生技術的重要性。
2023年4月,在核磁共振成像(MRI)技術問世50周年之際,將小鼠大腦圖像的分辨率提高了6400萬倍的新圖像發布。
歷史發展
磁共振成像是一種較新的醫學成像技術,國際上從一九八二年才正式用於臨床。它採用靜磁場和射頻磁場使人體組織成像,在成像過程中,既不用電子離輻射、也不用造影劑就可獲得高對比度的清晰圖像。它能夠從人體分子內部反映出人體器官失常和早期病變。它在很多地方優於X線CT。雖然X-CT解決了人體影像重疊問題,但由於提供的圖像仍是組織對X射線吸收的空間分布圖像,不能夠提供人體器官的生理狀態信息。當病變組織與周圍正常組織的吸收係數相同時,就無法提供有價值的信息。只有當病變發展到改變了器官形態、位置和自身增大到給人以異常感覺時才能被發現。磁共振成像裝置除了具備X線CT的解剖類型特點即獲得無重疊的質子密度體層圖像之外,還可藉助核磁共振原理精確地測出原子核弛豫時間T1和T2,能將人體組織中有關化學結構的信息反映出來。這些信息通過計算機重建的圖像是成分圖像(化學結構像),它有能力將同樣密度的不同組織和同一組織的不同化學結構通過影像顯示錶征出來。這就便於區分腦中的灰質與白質,對組織壞死、惡性疾患和退化性疾病的早期診斷效果有極大的優越性,其軟組織的對比度也更為精確。
早在1946年,美國哈佛大學的Edward Purcell和斯坦福大學的Felix Block領導的兩個研究小組發現了物質的核磁共振現象。他們二人於1952年被授予諾貝爾物理獎。核磁共振現象發現以後,很快就形成一門新的邊緣學科,核磁共振波譜學。它可以使人們在不破壞樣品的情況下,通過核磁共振譜線的區別來確定各種分子結構。這就為臨床醫學提供了有利條件。1967年,Jasper Jackson第一次從活的動物身上測得信號,使NMR方法有可能用於人體測量。1971年,美國紐約州立大學的R.Damadian教授利用核磁共振譜儀對鼠的正常組織與癌變組織樣品的核磁共振特性進行的研究發現,正常組織與癌變組織中水質子的T1值有明顯的不同。在X-CT發明的同年,1972年,美國紐約州立大學石溪分校的Paul C. Lauterbur第一個作了以水為樣本的二維圖像,顯示了核磁共振CT的可能性,即自旋密度成像法。這些實驗都使用限定的非均勻磁場,典型辦法是使磁場強度沿空間坐標軸作線性變化,以識別從不同空間位置發出的核磁共振信號。1978年,核磁共振的圖像質量已達到X線CT的初期水平,並在醫院中進行人體試驗。並最後定名為磁共振成像(MRI)。
2023年4月,在核磁共振成像(MRI)技術問世50周年之際,將小鼠大腦圖像的分辨率提高了6400萬倍的新圖像發布,新圖像中單個體素(三維像素)只有5微米。
參考文獻
- ↑ 【每日積累】漢字的概述?漢字的特點是什麼?,搜狐,2021-06-26
- ↑ 中國書法:一門古老的藝術!,搜狐,2018-07-17