導覽
近期變更
隨機頁面
新手上路
新頁面
優質條目評選
繁體
不转换
简体
繁體
18.223.172.122
登入
工具
閱讀
檢視原始碼
特殊頁面
頁面資訊
求真百科歡迎當事人提供第一手真實資料,洗刷冤屈,終結網路霸凌。
檢視 零和博弈 的原始碼
←
零和博弈
前往:
導覽
、
搜尋
由於下列原因,您沒有權限進行 編輯此頁面 的動作:
您請求的操作只有這個群組的使用者能使用:
用戶
您可以檢視並複製此頁面的原始碼。
{| class="wikitable" align="right" |- | style="background: #FF2400" align= center| '''<big>零和博弈</big>''' |- |<center><img src=https://so1.360tres.com/t0182855f669075ac10.jpg width="300"></center> <small>[https://baike.so.com/gallery/list?ghid=first&pic_idx=3&eid=5608971&sid=5821580 来自 网络 的图片]</small> |- | style="background: #FF2400" align= center| '''<big></big>''' |- | align= light| 中文名称: 零和游戏 别名: 游戏理论,零和博弈 适用领域: 金融,社会 所属学科: 社会学 |} 零和游戏又被称为游戏理论或'''零和博弈''',源于博弈论(game theory)。是指一项[[游戏]]中,游戏者有输有赢,一方所赢正是另一方所输,而游戏的总成绩永远为零。广泛用于有赢家必有输家的竞争与对抗。"零和游戏规则"越来越受到重视,因为[[人类社会]]中有许多与"零和游戏"相类似的局面。与"零和"对应,也常用"双赢"概念。"双赢"的基本理论就是"利己"不"损人",通过谈判、合作达到皆大欢喜的结果。<ref>[http://theory.people.com.cn/n/2015/1010/c112851-27681052.html 中美谁都承受不起零和博弈]中新网</ref> == 基本概念 == 零和游戏又被称为游戏理论或零和博弈,源于博弈论(game theory)。是指一项游戏中,游戏者有输有赢,一方所赢正是另一方所输,而游戏的总成绩永远为零。 零和游戏的内容如下:两人对弈,总会有一个赢,一个输,如果我们把获胜计算为得1分,而输棋为-1分。则若A获胜次数为N,B的失败次数必然也为N。若A失败的次数为M,则B获胜的次数必然为M。这样,A的总分为(N-M),B的总分为(M-N),显然(N-M)+(M-N)=0,这就是零和游戏的数学表达式。 现在广泛用于有赢家必有输家的竞争与对抗。“零和游戏规则”越来越受到重视,因为人类社会中有许多与“零和游戏”像类似的局面。与“零和”对应,现在也常用“双赢”概念。“双赢”的基本理论就是“利己”不“损人”,通过谈判、合作达到皆大欢喜的结果。 == 原理内容 == 零和游戏源于博弈论,现代博弈理论由[[匈牙利]]大数学家冯·诺伊曼于20世纪20年代开始创立,1944年他与经济学家奥斯卡·摩根斯特恩合作出版的巨著<博弈论与经济行为>,标志着现代系统博弈理论的初步形成。 零和游戏是指一项游戏中,游戏者有输有赢,一方所赢正是另一方所输,游戏的总成绩永远为零,零和游戏原理之所以广受关注,主要是因为人们在社会的方方面面都能发现与零和游戏类似的局面,胜利者的光荣后面往往隐藏着失败者的辛酸和苦涩。 通过有效合作皆大欢喜的结局是可能出现的。但从零和游戏走向双赢,要求各方面要有真诚合作的精神和勇气,在合作中不要小聪明,不要总想占别人的小便宜,要遵守游戏规则,否则双赢的局面就不可能出现,最终吃亏的还是合作者自己。 零和游戏之所以广受关注,主要是因为人们发现在社会的方方面面都能发现与“零和游戏”类似的局面,胜利者的光荣后往往隐藏着失败者的辛酸和苦涩。从个人到国家,从政治到经济,似乎无不验证了世界正是一个巨大的零和游戏场。这种理论认为,世界是一个封闭的系统,财富、资源、机遇都是有限的,个别人、个别地区和个别国家财富的增加必然意味着对其他人、其他地区和国家的掠夺,这是一个邪恶进化论式的弱肉强食的世界。我们大肆开发利用煤炭石油资源,留给后人的便越来越少;研究生产了大量的[[转基因产品]],一些新的病毒也跟着冒了出来;我们修筑了[[葛洲坝水利工程]],[[白鳍豚]]就再也不能洄游到金沙江产卵了…… 但20世纪以来,人类在经历了两次[[世界大战]]、经济的高速增长、科技进步、[[全球一体化]]以及日益严重的环境污染之后,“零和游戏”观念正逐渐被“双赢”观念所取代。在竞争的社会中,人们开始认识到“利己”不一定要建立在“损人”的基础上。领导者要善于跳出“零和”的圈子,寻找能够实现“双赢”的机遇和突破口,防止负面影响抵消正面成绩。批评下属如何才能做到使其接受而不抵触,发展经济如何才能做到不损害环境,开展竞争如何使自己胜出而不让对方受到伤害,这些都是每一个为官者应该仔细思考的问题。有效合作,得到的是皆大欢喜的结局。从零和走向正和,要求各方要有真诚合作的精神和勇气,遵守游戏规则,否则“双赢”的局面就不会出现,最终吃亏的还是合作者自己。 == 主要意义 == 对于非合作、纯竞争型博弈,诺伊曼所解决的只有二人零和博弈:好比两个人下棋、或是打乒乓球,一个人赢一着则另一个人必输一着,净获利为零。 在这里抽象化后的博弈问题是,已知参与者集合(两方) ,策略集合(所有棋着) ,和盈利集合(赢子输子) ,能否且如何找到一个理论上的“解”或“平衡“,也就是对参与双方来说都最”合理“、最优的具体策略?怎样才是合理?应用传统决定论中的“最小最大”准则,即博弈的每一方都假设对方的所有功略的根本目的是使自己最大程度地失利,并据此最优化自己的对策,诺伊曼从数学上证明,通过一定的线性运算,对于每一个二人零和博弈,都能够找到一个“最小最大解”。通过一定的线性运算,竞争双方以概率分布的形式随机使用某套最优策略中的各个步骤,就可以最终达到彼此盈利最大且相当。当然,其隐含的意义在于,这套最优策略并不依赖于对手在博弈中的操作。用通俗的话说,这个著名的最小最大定理所体现的基本“理性”思想是“抱最好的希望,做最坏的打算”。 虽然零和博弈理论的解决具有重大的意义,但作为一个理论来说,它应用于实践的范围是有限的。零和博弈主要的局限性有二,一是在各种社会活动中,常常有多方参与而不是只有两方;二是参与各方相互作用的结果并不一定有人得利就有人失利,整个群体可能具有大於零或小于零的净获利。对于后者,历史上最经典的案例就是“囚徒困境”。在“囚徒困境”的问题中,参与者仍是两名(两个盗窃犯),但这不再是一个零和的博弈,人受损并不等於我收益。两个小偷可能一共被判20年,或一共只被判2年。 == 参考来源 == [[Category:540 社會學總論]]
返回「
零和博弈
」頁面