導覽
近期變更
隨機頁面
新手上路
新頁面
優質條目評選
繁體
不转换
简体
繁體
3.16.217.218
登入
工具
閱讀
檢視原始碼
特殊頁面
頁面資訊
求真百科歡迎當事人提供第一手真實資料,洗刷冤屈,終結網路霸凌。
檢視 超导电子学 的原始碼
←
超导电子学
前往:
導覽
、
搜尋
由於下列原因,您沒有權限進行 編輯此頁面 的動作:
您請求的操作只有這個群組的使用者能使用:
用戶
您可以檢視並複製此頁面的原始碼。
{| class="wikitable" align="right" |- |<center><img src=https://p5.itc.cn/q_70/images03/20230729/8cf874188d344f09b2f3498414f4ce12.gif width="350"></center> <small>[https://www.sohu.com/a/707195244_121687424 来自 搜狐网 的图片]</small> |} '''超导电子学'''是全国科学技术名词审定委员会公布的一个科技名词。 汉字作为一种形、音、义三位一体的[[符号]]系统<ref>[https://www.sohu.com/a/210549791_680258 汉字——中华文化的独特符号],搜狐,2017-12-14</ref>,源于日月鸟兽之形,作为中华文明之标志<ref>[https://www.sohu.com/a/437797930_120142689 汉字——中华文明的基因],搜狐,2020-12-12</ref>,连接中华[[民族]]的历史、现在和未来,方正之间充满美感。 ==名词解释== 超导电子学是研究超导体内超导电子及其与电磁场相互作用的一系列效应的理论、技术,并据以开发新型电子器件和应用的[[学科]],它是超导体物理和电子学相结合的边缘学科。在超导电子学中,超导体的理想超导性、完全抗磁性、超导微观[[理论]]、弱场下的微波[[特性]]、约瑟夫森效应和超导量子干涉效应等具有重要作用。 简史 1908年,荷兰H.K.翁纳斯首次使氦气液化,成功地获得4.2K低温。1911年 ,他在研究各种金属在低温下的电阻性质时发现了汞的超导电性。1933年,W.迈斯纳和R.奥森菲尔德发现磁场不能进入超导体内部的新现象,即迈斯纳效应。这表明超导体具有完全抗磁性。为了解释超导体的理想导电性(零电阻现象)和完全抗磁性这两个基本特性,1935年德国物理学家F.W.伦敦指出,超导性是一种宏观体系的量子效应,并基于超导性与液氦4He的超流动性的相似性而将其统称为超流体,建立了超导唯象方程即伦敦方程。它指出磁场被排斥到厚度为λ 的伦敦穿透深度的表面薄层中,从而解释了迈斯纳效应。1950年,В.Л.金兹堡和Л.Д.朗道根据相变理论的研究,指出超导态中的超流电子存在某种有序化,且临界温度Tc以下有序度较高,状态用一个序参数 ψ()来描述(相当伦敦理论中的超导波函数),由此建立了金兹堡-朗道方程,也称GL方程。它惟象地综合了当时超导体已有的宏观规律。另外,由于对超导体热力学性质的研究,人们建立了二流体模型和能隙理论。1950年,J.R.施里弗提出电子-声子的相互作用在低温下导致超导性(电阻消失),并导出了同位素效应。上述理论和效应都没有从根本上说明超导电性的物理实质。直到1956年,L.N .库柏提出在超导体中有电子对,并于1957年建立了巴丁-库柏-施里弗超导微观理论,简称BCS理论。这一理论较为完满地解答了超导电性的物理本质。1962年,英国剑桥大学B.D.约瑟夫逊在关于隧道超流现象的著名论著中预言了超导隧道效应,也称约瑟夫逊效应。1963年实验证实了隧道超流现象确实存在。随后发现了Jc-H关系、I-υ 阶梯特性和自感应阶梯。1964年,默塞里奥与西尔弗发现约瑟夫逊双结量子干涉现象,两年后发明了双结磁强计。直流约瑟夫逊效应遂得以建立起严格的理论。人们从而发现红外检测的机理并观察到约瑟夫逊结的微波辐射效应、倍频、分谐波和混频效应,并用约瑟夫逊效应测定物理常数e/h值,制作出超导伏特计,发明记忆储存元件等。1970年又发明了单结环路的射频超导量子干涉器件等。约瑟夫逊效应从实验阶段走向了应用阶段,由此繁衍出的各类超导器件在现代各学科中获得广泛应用,并形成一门崭新的超导电子学。为此,超导隧道效应发现者约瑟夫逊、隧道技术开创者江崎玲於奈,以及半导体隧道和超导隧道间的桥梁架设者I.贾埃弗三人获得1973年诺贝尔奖金。 学科内容 超导电子学的理论是以超导体的两个基本特性即零电阻的理想导电性和 迈斯纳效应的完全抗磁性为基础,以超导微观理论和超导约瑟夫逊效应为核心。理想导电性是指导体电阻突然消失的零电阻特性,又称超导电性。具有超导电性的物质称为超导体,迄今已发现28种金属、上千种化合物和合金是超导体。材料处于超导状态简称超导态。完全抗磁性是指超导体在超导态时将其内部磁场完全排出体外的现象,又称迈斯纳效应。在超导基本理论的研究中,还发现有同位素效应和库柏对的重要规律和概念。同位素效应是指由不同的同位素做成的超导元素材料,其临界温度Tc和同位素质量M服从Tc·Mα=常数的实验和理论规律。库柏对是指两个电子动量相反,自旋相反,其间的吸引作用最强。如果这个吸引的声子作用胜过排斥的库仑作用,则两电子之间的净作用力是吸引力。只要存在净的吸引作用,不管如何弱,两电子也会互相围绕着运动而束缚在一起。这样一对电子称为库柏对。 超导微观理论 这个理论认为,超导电子就是组成库柏对的那些电子,它们处于凝聚状态。T=0时,所有电子都组成库柏对,它们都是超导电子。在T厵0时,晶格的热振动可能把一些库柏对拆散 ,使其成为正常电子,温度越高,库柏对越少,正常电子越多。临界温度为Tc时,所有库柏对全部拆散,所有电子都是正常电子,即非配对电子,材料完全处于正常态。这一理论从量子学说出发,揭示了超导电性的主要因素,解释了超导态的基本特性。 高频电磁特性 超导体在微波频率下所具有的超导电性。在高频下,当光量子的能量大于超导体的能隙2Δ时,由于超导体吸收电磁波能量,库柏对被拆散成单个电子,超导态转变成正常态,这时的高频频率称为转变频率。不同超导体的转变频率各不相同,一般在1012赫左右。在理论上,造成这时高频电磁损耗的剩余表面电阻Rs,取决于温度、频率、穿透深度、电子费米速度、相干长度、电子平均自由程和超导能隙,其近似表达式为 式中A为与温度和频率无关的材料特征参数;ω为角频率;T为温度;k为玻耳兹曼常数;α为一个由电子平均自由程l和伦敦穿透深度λL与相干长度 ξ之比决定的指数,一般在1.5~2之间。随着材料环境温度的降低,表面电阻也随之下降。只要材料处于超导态,其高频电磁损耗与正常态相比仍然低好几个数量极。利用超导体这种高频低电磁损耗特性可以制成各种超导无源器件,例如,超导波导和谐振腔、超导微带器件、超导高频同轴电缆和超导延迟线等。 ==参考文献== [[Category:800 語言學總論]]
返回「
超导电子学
」頁面