開啟主選單
求真百科
搜尋
檢視 标准正态分布 的原始碼
←
标准正态分布
由於下列原因,您沒有權限進行 編輯此頁面 的動作:
您請求的操作只有這個群組的使用者能使用:
用戶
您可以檢視並複製此頁面的原始碼。
{| class="wikitable" align="right" |- | style="background: #FF2400" align= center| '''<big>标准正态分布</big>''' |- |<center><img src=https://p1.ssl.qhimg.com/t0170be46a3a28f60e9.jpg width="300"></center> <small>[https://baike.so.com/gallery/list?ghid=first&pic_idx=1&eid=6791440&sid=7008061 来自 网络 的图片]</small> |- |- | align= light| |} '''标准正态分布'''---standard normal distribution 标准正态分布又称为u分布,是以0为均数、以1为标准差的正态分布,记为N(0,1)。 标准正态分布曲线下面积分布规律是:在-1.96~+1.96范围内曲线下的面积等于0.9500,在-2.58~+2.58范围内曲线下面积为0.9900。统计学家还制定了一张统计用表(自由度为∞时),借助该表就可以估计出某些特殊u1和u2值范围内的曲线下面积。 正态分布的概率密度函数曲线呈钟形,因此人们又经常称之为钟形曲线。我们通常所说的标准正态分布是位置参数均数为0, 尺度参数:标准差为1的正态分布(见右图中绿色曲线)。 =='''简介'''== 正态分布(Normal distribution)又名高斯分布(Gaussian distribution),是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。期望值μ=0,即曲线图象对称轴为Y轴,标准差σ=1条件下的正态分布,记为N(0,1)。 正态分布的概率密度函数曲线呈钟形,因此人们又经常称之为钟形曲线。我们通常所说的[[标准]]正态分布是位置参数均数为0, 尺度参数:标准差为1的正态分布(见右图中绿色曲线)。 正态分布中一些值得注意的量: 密度函数关于平均值对称 平均值与它的众数(statistical mode)以及中位数(median)同一数值。 函数曲线下68.268949%的面积在平均数左右的一个标准差范围内。 95.449974%的面积在平均数左右两个标准差的范围内。 99.730020%的面积在平均数左右三个标准差的范围内。 99.993666%的面积在平均数左右四个标准差的范围内。 函数曲线的反曲点(inflection point)为离平均数一个标准差距离的位置。 =='''评价'''== 深蓝色区域是距平均值小于一个标准差之内的数值范围。在正态分布中,此范围所占比率为全部数值之68%,根据正态分布,两个标准差之内的比率合起来为95%;三个标准差之内的比率合起来为99%。[1] 在实际应用上,常考虑一组数据具有近似于正态分布的概率分布。若其假设正确,则约68.3%数值分布在距离平均值有1个标准差之内的范围,约95.4%数值分布在距离平均值有2个标准差之内的范围,以及约99.7%数值分布在距离平均值有3个标准差之内的范围。称为"68-95-99.7法则"或"经验法则"。<ref>[https://baijiahao.baidu.com/s?id=1742373506554935080&wfr=spider&for=pc 标准正态分布]搜狗</ref> =='''参考文献'''== [[Category:310 數學總論]]
返回「
标准正态分布
」頁面