導覽
近期變更
隨機頁面
新手上路
新頁面
優質條目評選
繁體
不转换
简体
繁體
3.138.37.174
登入
工具
閱讀
檢視原始碼
特殊頁面
頁面資訊
求真百科歡迎當事人提供第一手真實資料,洗刷冤屈,終結網路霸凌。
檢視 李庆文(教授) 的原始碼
←
李庆文(教授)
前往:
導覽
、
搜尋
由於下列原因,您沒有權限進行 編輯此頁面 的動作:
您請求的操作只有這個群組的使用者能使用:
用戶
您可以檢視並複製此頁面的原始碼。
{| class="wikitable" style="float:right; margin: -10px 0px 10px 20px; text-align:left" |<center>''' 李庆文 '''<br><img src=" https://sd.ustb.edu.cn//images/2023-07/bb50c711b0864dba8cb2cca928ab8dc6.jpg" width="180"></center><small>[https://sd.ustb.edu.cn//szdw/05f2e09ae960478f903d9c50517afc52.htm 北京科技大学顺德创新学院] </small> |} '''李庆文''',男,北京科技大学顺德创新学院教授。 ==人物简历== === 工作经历 === 2018年7年至今,北京科技大学土木与资源工程学院,副教授 2015年8月-2018年6月,北京科技大学土木与资源工程学院,讲师 2015年8月-2017年12月,北京科技大学土木与资源工程学,师资博士后 2013年9月-2014年9月,美国哥伦比亚大学,访问学者 2011年9月-2012年3月,美国北卡罗莱纳州州立大学,访问学者 2010年9月-2015年6月,北京科技大学岩土工程专业,博士 2009年9月-2010年6月,北京科技大学工程力学专业,硕博连读 2005年9月-2009年6月,北京理工大学飞行器设计与工程专业,学士 ==研究方向== 1. [[岩石力学]]与[[岩石动力学]] 2. 能源地下结构 3. 工程建设碳测算与减碳路径 ==科研项目== 建筑结构智能监测关键技术研究,北京科技大学顺德创新学院科技创新专项,2021.9.1-2022.8.31,参与。 ==获奖情况== 2022年12月,工程建设科学技术进步奖二等奖 2021年12月,中国石油工程建设协会科技进步奖二等奖 2021年03月,中国职业安全健康协会科学技术奖二等奖 2020年12月,中国有色金属工业科学技术奖二等奖 2017年12月,北京科技大学优秀博士后 2017年10月,中国岩石力学与工程学会2017年度优秀博士学位论文 2015年06月,北京市优秀毕业生 2015年06月,北京科技大学优秀博士论文 2014年10月,[[中国工程爆破协会]]科学进步一等奖 ==学术成果== 以第一/通讯作者共发表SCI/EI论文43篇,其中SCI论文32篇、EI论文11篇。 [1] Transport Characteristics of Tailing Sand Particles under Slotted Tube Overlapped with Geotextile and Steel mesh. Geofluids, 2023, 2023: 1270931. [2] Study on Wind-Proof Effect and Stability of Windbreak Fence in Alpine Skiing Center. Sustainability, 2023, 15, 3369 [3] Study on Damage Behavior and Its Energy Distribution of Deep Granite at High-Temperature Conditions. Applied Sciences, 2023. 13:6498. [4] 巴西圆盘劈裂二维及三维数值模拟研究, 工程科学学报, 2022. 44(1): 131-142. [5] Analysis on rock fracture signals and exploration of infrared advance prediction under true triaxial loading. Journal of Materials in Civil Engineering, 2022, 34(5): 04022058. [6] Response of energy pile-soil structure and pile group effect: An indoor similarity simulation study. Journal of Building Engineering, 2022, 51: 104247. [7] Effect of thermal treatment on physical and mechanical properties of sandstone for thermal energy storage: a comprehensive experimental study. Acta Geotechnica, 2022, 17: 3887–3908. [8] Modification of CSIRO method in Long-term Monitoring of Slope-Induced Stress [J]. Frontiers in Earth Science. 2022. 10: 981470. [9] Effect of microwave heating on the mechanical properties and energy dissipation characteristics of hard rock [J]. Environmental Earth Sciences, 2022, 81: 415. [10] Study on crack evolutional behavior of rocks in triaxial compression based on colony growth dynamics model. Scientific Reports, 2022, 12: 18459. [11] Study on cross-scale pores fractal characteristics of granite after high temperature and rock failure precursor under uniaxial compression. Powder Technology, 2022, 401: 117330. [12] Research on the Conversion Relationship between Dynamic Point Load Strength and Dynamic Compressive Strength Based on Energy System. Shock and Vibration, 2022, 2022: 6988292. [13] Multi-crackNet: A Fast segmentation and Quatification Combined Method for Rock Discontinuity Traces by Capturing an Image. Geofluids, 2022, 2022, 1832662. [14] A new environmentally friendly utilization of energy piles into geotechnical engineering in Northern China. Advance in Civil Engineering, 2021, 2021: 4689062. [15] Study on Magnetite Ore Crushing Assisted by Microwave Irradiation. Minerals, 2021, 11, 1127. [16] 能源桩三维螺旋线热源瞬态传热模型研究, 工程科学学报, 2021, 43(11): 1569-1576. [17] Study on the fracture behavior of prefabricated fissures granite based on DIC and laser scanning techniques[J]. Fatigue Fract Eng Mater Struct. 2021, 44: 1–19. [18] A Method to Predict Rock Fracture with Infrared Thermography Based on Heat Diffusion Analysis [J]. Geofluids, 2021, 2021: 1-13. [19] Enhancing heat transfer in the heat exchange medium of energy piles [J]. Journal of Building Engineering, 2021, 26: 102375. [20] Rockburst Prediction on the Superimposed Effect of Excavation Accumulation Energy and Blasting Vibration Energy in Deep Roadway [J]. Shock and Vibration, 2021,2021: 6644590. [21] 厚径比对高阻尼橡胶材料的缓冲吸能特性实验. 哈尔滨工业大学学报, 2021, 53(5): 165-172. [22] 基于微波加热技术的硬岩破裂方法探究. 煤炭学报, 2021, 46(s1): 241-248. [23] Energy Dissipation Analysis of Dynamic Splitting Damage of Granite by Joint Inclination and Roughness, Geotech Geol Eng, 2020, 38:3585-3595. [24] Effects of microwave irradiation on impact comminution and energy absorption of magnetite ore, IOP Conf. Series: Earth and Environmental Science, 2020, 570: 052003. [25] Dynamic analysis and criterion evaluation on rockburst considering the fractured dissipative energy. Advances in Mechanical Engineering, 2019, 11(3):1-12. [26] A study on heat transfer characteristics and pile group influence of enhanced heat transfer energy piles. Journal of Building Engineering, 2019, 24: 100768. [27] Study on dynamic compaction characteristics of gravelly soils with crushing effect. Soil Dynamics and Earthquake Engineering, 2019, 120: 158-169. [28] 考虑桩周土体的海上风电大直径单桩变径体系1阶频率研究. 太阳能学报, 2019, 40(5): 1433-1440. [29] Enhanced Heat Transfer Characteristics of Graphite Concrete and Its Application in Energy Piles. Advances in Materials Science and Engineering, 2018, 2018: 8142392. [30] Laboratory testing on energy absorption of high-damping rubber in a new bolt for preventing rockburst in deep hard rock mass. Shock and Vibration, 2018, 2018: 7214821. [31] Laboratory Investigation of Energy Propagation and Scattering Characteristics in Cylindrical Rock Specimens, Advances in Civil Engineering, 2018, 2018: 2052781. [32] 高阻尼橡胶用于岩石动载冲击防护的吸能特性试验研究. 岩石力学与工程学报, 2018, 37(4): 961-968. [33] Thermal effect on structural interaction between energy pile and its host soil. Advances in Materials Science and Engineering, 2017, 2017: 7121785. [34] Energy characterization based assessment of pillar recovery. Arabian Journal of Geosciences, 2017, 10:367 [35] Adopting method of key block and energy distribution to predict the slope stability under blasting. Journal of Vibroengineering, 2017,19(8):6183‑6197. [36] Implementation of the strain hardening model into buffer material in high level waste repository. Geosciences Journal, 2017, 21(2): 277–289. [37] Implementation of a simulation inversion method into estimating the damping coefficient in blasting, Journal of Vibroengineering, 2016, 18(5): 3037-3047. [38] High Strain Rate Characteristics of Rock Materials Under Dynamic Impact, Electronic Journal of Geotechnical Engineering, 2016, 21: 7885-7892. [39] Adopting the In-Situ Test and Numerical Simulation to the Design of Underwater Rock Plug Blasting, Electronic Journal of Geotechnical Engineering, 2016, 21(19): 6359-6370. [40] Blasting Vibration Safety Criterion Analysis with Equivalent Elastic Boundary: Based on Accurate Loading Model, Shock and Vibration, 2015, 2015: 1-10. [41] Study on the Seepage and Stability of Carbon Dioxide Geological Storage inScrap Metal Mine: A Finite Difference Analysis, Advances in Mechanical Engineering, 2015, 7(1): 1-13. [42] Analysis of the Blasting Compaction on Gravel Soil, Journal of Chemistry, 2015, 2015: 1-9. [43] 基于精确爆破载荷分析的安全距离判据, 工程力学, 2015, 32(10): 123-129.<ref>[https://sd.ustb.edu.cn/ 北京科技大学顺德创新学院]</ref> ==参考资料== {{reflist}} [[Category:教授]]
此頁面使用了以下模板:
Template:Main other
(
檢視原始碼
)
Template:Reflist
(
檢視原始碼
)
模块:Check for unknown parameters
(
檢視原始碼
)
返回「
李庆文(教授)
」頁面