導覽
近期變更
隨機頁面
新手上路
新頁面
優質條目評選
繁體
不转换
简体
繁體
18.188.102.117
登入
工具
閱讀
檢視原始碼
特殊頁面
頁面資訊
求真百科歡迎當事人提供第一手真實資料,洗刷冤屈,終結網路霸凌。
檢視 张瑞丽 的原始碼
←
张瑞丽
前往:
導覽
、
搜尋
由於下列原因,您沒有權限進行 編輯此頁面 的動作:
您請求的操作只有這個群組的使用者能使用:
用戶
您可以檢視並複製此頁面的原始碼。
{| class="wikitable" style="float:right; margin: -10px 0px 10px 20px; text-align:left" |<center>''' 张瑞丽 '''<br><img src=" http://faculty.bjtu.edu.cn/media/avatar/2017/10/12/20171012101620_40.jpg " width="180"></center><small>[http://faculty.bjtu.edu.cn/9132/ 北京交通大学] </small> |} '''张瑞丽''',女,北京交通大学副教授。 ==人物简历== === 教育背景 === 2009.09-2014.07, 中国科学院数学与系统科学研究院,计算数学所,硕博连读 2005.09-2009.07,首都师范大学,数学科学学院,本科 === 工作经历 === 2019.01-至今,北京交通大学,副教授 2017. 05-2018.12, 北京交通大学, 讲师 2014.09-2017.05, 中国科学技术大学,博士后 2020年1月至2020年3月,访问柏林工业大学(访问学者); 中国系统仿真学会仿真算法专业委员会委员、青年工作委员会委员; [[《系统仿真学报》]]青年编委 ==研究方向== [[计算理论]]与[[信息处理]] 微分方程理论与应用 ==科研项目== 国家自然科学基金面上项目,2023/01-2026/12,70.24万元,在研,主持 人才基金,2017/10-2019/10,10万元,已结题,主持 第58批国家博士后科学基金面上项目(二等),2016/01-2017/12,5万元,已结题,主持 国家自然科学基金青年基金,2016/01-2018/12,25.2万元,已结题,主持 国家自然科学基金面上项目,2016/01-2019/12,76.8万元,已结题,参加 科技部国家磁约束核聚变能发展专项,2015/01-2019/12,4000万元,已结题,参加 教育部中央高校科研业务专项资助,2015/01-2016/12,5万元,已结题,主持 科技部国家磁约束核聚变能发展专项(人才课题),2014/01-2018/12,240万元,已结题,参加 [23] L. Brugnano, F. Iavernaro, R. Zhang, Arbitrarily high-order energy-preserving methods for simulating the gyrocenter dynamics of charged particles, Journal of Computational and Applied mathematics, 2020, 380:112994.<ref>[http://soms.bjtu.edu.cn/szdw/jsml/xxyjskxx/index.htm 北京交通大学]</ref> ==参考资料== {{reflist}} [[Category:教授]] [22] R. Zhang, H. Qin, J. Xiao, PT-symmetry entails pseudo-Hermiticity regardless of diagonalizability, Journal of Mathematical Physics, 2020, 61: 012101. [21] R. Zhang, J. Liu, H. Qin, Y. Tang, Energy-preserving algorithm for gyrocenter dynamics of charged particles, Numerical Algorithm, 2019, 81: 1521-1530. [20] H. Qin, R. Zhang, A.S. Glasser, J. Xiao, Kelvin-Helmholtz instability is the result of parity-time symmetry breaking, Phys. Plasma, 2019, 26: 032102. [19] R. Zhang, Y. Wang, Y. He, J. Xiao, J. Liu, H. Qin, Y.Tang, Explicit symplectic algorithms based on generating function for relativistic charged particle dynamics in time-dependent electromagnetic field, Phys. Plasma, 2018, 25: 022117. [18] J. Xiao, H. Qin*, J. Liu, R. Zhang, Local energy conservation law for spatially-discretized Hamiltonian Vlasov-Maxwell system, Phys. Plasma, 2017, 24: 062112. [17] X. Tu, B. Zhu, Y. Tang, H. Qin, J. Liu* and R. Zhang, A family of new explicit, revertible, volume-preserving numerical schemes for the system of Lorentz force, Phys. Plasma, 2016, 23: 122514. [16] J. Xiao, H. Qin*, P. Morrison, J. Liu, Z. Yu, R. Zhang, Y. He, Explicit high-order noncanonical symplectic algorithms for ideal two-fluid systems, Phys. Plasma, 2016, 23: 112107. [15] B. Zhu, Z. Hu, Y. Tang*, R. Zhang, Symmetric and symplectic methods for gyrocenter dynamics in time-independent magnetic fields, International Journal of Modeling, Simulation, and Scientific Computing, 2016(7), 1650008 [14] R. Zhang, H. Qin, Y. Tang, J. Liu, Y. He and J. Xiao, Explicit algorithms based on generating functions for charged particle dynamics, Physical Review E 94, 013205, (2016). [13] R. Zhang, H. Qin, R. C. Davidson, J. Liu, and J. Xiao, On the structure of the two-stream instability–complex G-Hamiltonian structure and Krein collisions between positive- and negativeaction modes, Phys. Plasma 23, 072111, (2016). [12] R. Zhang, J. Liu, H. Qin, Y. Tang, Y. He and Y. Wang, Application of Lie algebra in constructing volume-preserving algorithms for charged particles dynamics, Communications in Computational Physics, 19 (2016) 1397-1408. [11] R. Zhang, Y. Tang, B. Zhu, X. Tu and Y. Zhao, Convergence analysis of the formal energies of symplectic methods for Hamiltonian systems, SCIENCE CHINA Mathematics, 59 (2016) 379-396. [10] Y. He, Y. Sun, R. Zhang, Y. Wang, J. Liu and H. Qin, High order volume-preserving algorithms for relativistic charged particles in general electromagnetic fields, Phys. Plasma 23, 092109 (2016). [9] B. Zhu, R. Zhang, Y. Tang, X. Tu and Y. Zhao, Splitting K-symplectic methods for non-canonical separable Hamiltonian problems, Journal of Computational Physics 322, 387-399, (2016). [8] Y. He, H. Qin, Y. Sun, J. Xiao, R. Zhang and J. Liu, Hamiltonian time integrators for Vlasov-Maxwell equations, Phys. Plasmas 22(12), 124503 (2015). [7] J. Xiao, H. Qin, J. Liu, Y. He, R. Zhang and Y. Sun, Explicit high-order non-canonical symplectic particle-in-cell algorithms for Vlasov-Maxwell systems, Phys. Plasmas 22, 112504 (2015). [6] H. Qin, J. Liu, J. Xiao, R. Zhang, Y. He, Y. Wang, J. W. Burby, L. Ellison and Y. Zhou, Canonical symplectic particle-in-cell method for long-term large-scale simulations of the Vlasov-Maxwell system, Nuclear Fusion 56(1), 014001, (2015). [5] H. Qin, Y. He, R. Zhang, J. Liu, J. Xiao and Y. Wang, Comment on “Hamiltonian splitting for the Vlasov-Maxwell equations”, Journal of Computational Physics 297, 721-723, (2015). [4] R. Zhang, J. Liu, H. Qin, Y. Wang, Y. He and Y. Sun, Volume-preserving algorithm for secular relativistic dynamics of charged particles, Phys. Plasmas 22, 044501 (2015). [3] R. Zhang, J. Liu, Y. Tang, H. Qin, J. Xiao and B. Zhu, Canonicalization and symplectic simulation of the gyrocenter dynamics in time-independent magnetic fields, Phys. Plasmas 21, 032504 (2014). [2] H. Fang, G. lin and R. Zhang, The first-order symplectic Euler method for simulation of GPR wave propagation in pavement structure, IEEE Transaction on geosciences and remote sensing, Vol. 51, No.1, (2013) 93-98. [1] R. Zhang, J. Huang, Y. Tang and L. Vázquez, Revertible and Symplectic Methods for the Ablowitz-Ladik Discrete Nonlinear Schrodinger Equation, GCMS’11 Proceeding of the 2011 Grand Challenges on Modeling and Simulation Conference, 297-306, (2011).<ref>[http://soms.bjtu.edu.cn/szdw/jsml/xxyjskxx/index.htm 北京交通大学]</ref> ==参考资料== {{reflist}} [[Category:教授]]
此頁面使用了以下模板:
Template:Main other
(
檢視原始碼
)
Template:Reflist
(
檢視原始碼
)
模块:Check for unknown parameters
(
檢視原始碼
)
返回「
张瑞丽
」頁面