導覽
近期變更
隨機頁面
新手上路
新頁面
優質條目評選
繁體
不转换
简体
繁體
3.145.57.41
登入
工具
閱讀
檢視原始碼
特殊頁面
頁面資訊
求真百科歡迎當事人提供第一手真實資料,洗刷冤屈,終結網路霸凌。
檢視 光谱学 的原始碼
←
光谱学
前往:
導覽
、
搜尋
由於下列原因,您沒有權限進行 編輯此頁面 的動作:
您請求的操作只有這個群組的使用者能使用:
用戶
您可以檢視並複製此頁面的原始碼。
{| class="wikitable" align="right" |- |<center><img src=http://5b0988e595225.cdn.sohucs.com/images/20180213/936c4f75071f447a93a2a2f14c5e7ee6.jpeg width="350"></center> <small>[https://www.sohu.com/a/222588098_99961126 来自 搜狐网 的图片]</small> |} '''光谱学'''是中国的一个科技名词。 汉字是[[世界]]上比较古老的四大文字之一<ref>[https://www.sohu.com/a/130584341_507440 世界上最古老的四大文字系统~],搜狐,2017-03-27</ref>,也是我们国家优秀文明历史的象征,一直沿用至今,一个简单的文字也道出了我国人们的聪明才智<ref>[https://www.sohu.com/a/73739477_211277 中国汉字文化,道出人生哲理],搜狐,2016-05-06</ref>,哺育了世世代代的中华儿女,成就了中华[[民族]]一代又一代的辉煌。 ==名词解释== 光谱学是一门主要涉及物理学及化学的重要交叉学科,通过光谱来研究电磁波与物质之间的相互作用。光是一种由各种波长(或者频率)的电磁波叠加起来的电磁辐射。光谱是一类借助光栅、棱镜、傅里叶变换等分光手段将一束电磁[[辐射]]的某项性质解析成此辐射的各个组成波长对此性质的贡献的图表。例如一幅吸收光谱可以在某个波段按照从低到高的波长顺[[序列]]出物质对于相应波长的吸收程度。 随着[[科技]]的进展,光谱学所涉及的电磁波波段越来越宽广,从波长处于皮米级的γ射线,到X射线,紫外线,可见光区域,红外线,微波,再到波长可达几公里的无线电波,都有其与物质作用的特征形式。按照光与物质的作用形式,光谱一般可分为吸收光谱、发射光谱、散射光谱等。通过光谱学研究,人们可以解析原子与分子的能级与几何结构、特定化学过程的反应速率、某物质在太空中特定区域的浓度分布等多方面的微观与宏观性质。人们也可以利用物质的特定组成结构来产生具有特殊光学性质的光谱,例如特定频率的激光。光谱学并不仅是一门基础科学,在日常应用中它也是一种重要的定性、定量测量方法,例如水质中各项物质含量的分析、通过分析血液中蛋白质的含量进行疾病预防与监测、使用最优波段进行光纤通讯等。自上世纪中叶激光被发现以来,人类对于光的控制达到了新的阶段,可以产生具有前所未有的亮度、频率分布以及时间分辨率的电磁辐射,开启了通向非线性光学与非线性光谱学的大门,使得光谱学处于高速发展的崭新时期。 简史 光谱学的研究已有三百多年的历史了。1666年,I.牛顿把通过玻璃棱镜的太阳光展成从红光到紫光的各种颜色的光谱,他发现白光是由各种颜色的光组成的。这是最早对光谱的研究。其后一直到1802年,W.H.渥拉斯顿与1814年 J.von夫琅和费彼此独立地观察到了光谱线。每条谱线只代表一种“颜色”的光。这里颜色一词是广义的。牛顿之所以没有能观察到光谱线,是因为他使太阳光通过了圆孔而不是通过狭缝。在1814~1815年之间,夫琅和费公布了太阳光谱中的许多条暗线,并以字母来命名,其中有些命名沿用至今。此后便把这些线称为夫琅和费暗线。 实用光谱学是由基尔霍夫,G·R与本生,R·W.E.在19世纪60年代发展起来的;他们证明光谱学可以用作定性化学分析的新方法,还利用这种方法发现了几种当时还为人所不知的元素,并且证明了在太阳里存在着多种已知的元素。 从19世纪中叶起一直是光谱学研究的重要课题之一。在试图说明氢原子光谱的过程中,所得到的各项成就对量子力学法则的建立起了很大促进作用。这些法则不仅能够应用于氢原子,也能应用于其他原子、分子和凝聚态物质。事实上,它们终于成为近代化学、固体物理乃至应用学科诸如电子学的基础。 氢原子光谱中最强的一条谱线是1853年由瑞典物理学家A.J.埃斯特朗探测出来的(光波波长的单位即以他的姓氏命名,1埃等于10-8厘米)。此后的20年中,在星体的光谱中观测到了更多的氢原子谱线。1885年,从事天文测量的瑞士科学家J.J.巴耳末找到一个经验公式来说明已知的氢原子谱线的位置。此后便把这一组线称为巴耳末系。继巴耳末的成就之后,1889年,瑞典光谱学家J.R.里德伯发现了许多元素的线状光谱系,其中最为明显的为碱金属原子的光谱系,它们都能满足一个简单的公式——里德伯公式。这个公式后来写成 (1)1/λ=R[(1/m²)-(1/n²)]+bn+c 其中λ为波长,以埃为单位。m和n取正整数1,2,3,…。b和с为常数,其数值依赖于不同元素不同线系。R的值对于所有元素的线系都几乎相同,称为里德伯常量。当式(1)中的b,с都等于零时,则式(1)简化为巴耳末公式。 1/λ=R[(1/m²)-(1/n²)](2) 以适当的m和n的值代入式(2)中,就得到了氢原子光谱中所有谱线的波长。 尽管氢原子光谱线的波长的表示式(2)十分简单,但对其起因当时却茫然不知。一直到1913年,N.玻尔才对它作出了明确的解释。玻尔不仅导出式(2),而且也计算出里德伯常数的数值。虽然玻尔理论在概念上比以前有了很大进展,但玻尔理论并不能解释所观测到的原子光谱的各种特征,即使对于氢原子光谱的进一步的解释也遇到了困难。例如,早在1892年A.A.迈克耳孙就发现了巴耳末系中的最强线实际上是由紧靠近的两条线组成的,它们之间的间隔约为0.14埃。 能够满意地解释这种光谱线的分裂以及其他复杂原子光谱的是20世纪发展起来的量子力学。电子不仅具有轨道角动量,而且还具有自旋角动量。这两种角动量的结合便成功地解释了光谱线的分裂现象。电子自旋的概念首先是在1925年由G.E.乌伦贝克和S.A.古兹密特作为假设而引入的,以便解释碱金属原子光谱的测量结果。在P.A.M.狄拉克的相对论性量子力学中,电子自旋(包括质子自旋与中子自旋)的概念有了牢固的理论基础,这乃是基本方程的自然结果而不是作为一种特别的假设了。 1896年,P.塞曼把光源放在磁场中来观察磁场对光谱线的影响。结果发现所研究的光谱线分裂成为密集的三重线,而且这些谱线都是偏振的。现代把这种现象称为塞曼效应。1897年,H.A.洛伦兹对于这个效应作了满意的解释,其基本概念是光由各向同性的谐振子发射出来的,这些谐振子的运动在磁场中受到了磁力线的作用,产生了塞曼分裂。但是,1898年,T.普雷斯顿观察到锌线(4722埃)与镉线(4800埃)在磁场中分裂为四重线而非三重线。类似的现象别人也观察到了。后来人们便把谱线的三重线分裂称为正常塞曼效应,而把所有例外情况称为反常塞曼效应。 塞曼效应不仅在理论上具有重要意义,而且在实用上也是重要的,在复杂光谱的分类中,塞曼效应是一种很有用的方法,有效地帮助了人们对于复杂光谱的理解。另一方面,被称为斯塔克效应的光谱线在电场中的分裂(1913)则仅具有理论意义,而对于光谱线的分析却无实际用途。 内容 根据研究光谱方法的不同,习惯上把光谱学区分为发射光谱学、吸收光谱学与散射光谱学。这些不同种类的光谱学从不同方面提供物质微观结构知识及不同的化学分析方法。 ==参考文献== [[Category:800 語言學總論]]
返回「
光谱学
」頁面