導覽
近期變更
隨機頁面
新手上路
新頁面
優質條目評選
繁體
不转换
简体
繁體
18.222.56.71
登入
工具
閱讀
檢視原始碼
特殊頁面
頁面資訊
求真百科歡迎當事人提供第一手真實資料,洗刷冤屈,終結網路霸凌。
檢視 偏微分方程 的原始碼
←
偏微分方程
前往:
導覽
、
搜尋
由於下列原因,您沒有權限進行 編輯此頁面 的動作:
您請求的操作只有這個群組的使用者能使用:
用戶
您可以檢視並複製此頁面的原始碼。
{| class="wikitable" align="right" |- | style="background: #FF2400" align= center| '''<big>偏微分方程</big>''' |- |<center><img src=https://p1.ssl.qhimg.com/dr/270_500_/t01729e1a37464e2dd3.jpg?size=487x410 width="300"></center> <small>[https://baike.so.com/doc/5582493-5795397.html 来自 网络 的图片]</small> |- |- | align= light| |} 《'''偏微分方程'''》是2010年高等教育出版社出版的图书,作者是孔德兴。 =='''简介'''== 如果一个微分方程中出现的未知函数只含一个自变量,这个方程叫做常微分方程,也简称微分方程;如果一个微分方程中出现多元函数的偏导数,或者说如果未知函数和几个变量有关,而且方程中出现未知函数对几个变量的导数,那么这种微分方程就是偏微分方程。微积分方程这门学科产生于十八世纪,欧拉在他的著作中最早提出了弦振动的二 偏微分方程阶方程,随后不久,法国数学家达朗贝尔也在他的著作《论动力学》中提出了特殊的偏微分方程。这些著作当时没有引起多大注意。1746年,达朗贝尔在他的论文《张紧的弦振动时形成的曲线的研究》中,提议证明无穷多种和正弦曲线不同的曲线是振动的模式。这样就由对弦振动的研究开创了偏微分方程这门[[学科]]。 =='''评价'''== 偏微分方程得到迅速发展是在十九世纪,那时候,数学物理问题的研究繁荣起来了,许多数学家都对数学物理问题的解决做出了贡献。这里应该提一提法国数学家傅立叶,他年轻的时候就是一个出色的数学学者。在从事热流动的研究中,写出了《热的解析理论》,在文章中他提出了三维空间的热方程,也就是一种偏微分方程。他的研究对偏微分方程的发展的影响是很大的。<ref>[https://www.csdn.net/tags/MtTaAg4sODQ1NDMwLWJsb2cO0O0O.html 偏微分方程]搜狗</ref> =='''参考文献'''== [[Category:300 科學總論]]
返回「
偏微分方程
」頁面