導覽
近期變更
隨機頁面
新手上路
新頁面
優質條目評選
繁體
不转换
简体
繁體
3.136.236.178
登入
工具
閱讀
檢視原始碼
特殊頁面
頁面資訊
求真百科歡迎當事人提供第一手真實資料,洗刷冤屈,終結網路霸凌。
檢視 互质 的原始碼
←
互质
前往:
導覽
、
搜尋
由於下列原因,您沒有權限進行 編輯此頁面 的動作:
您請求的操作只有這個群組的使用者能使用:
用戶
您可以檢視並複製此頁面的原始碼。
{| class="wikitable" align="right" |- | style="background: #008080" align= center| '''<big>互质</big> ''' |- | [[File:8ad4b31c8701a18bf834acd6942f07082938fe48.jpg|缩略图|居中|[https://i01piccdn.sogoucdn.com/ae413be0808ed686 原图链接][https://pic.sogou.com/pics?ie=utf8&p=40230504&interV=kKIOkrELjbgQmLkElbYTkKIMkrELjbkRmLkElbkTkKIRmLkEk78TkKILkbHjMz%20PLEDmK6IPjf19z%2F19z6RLzO1H1qR7zOMTMkjYKKIPjflBz%20cGwOVFj%20lGmTbxFE4ElKJ6wu981qR7zOM%3D_844253275&query=%E9%AB%98%E7%A3%81%E5%AF%BC%E7%8E%87%E6%9D%90%E6%96%99 来自搜狗的图片]]] |- | style="background: #008080" align= center| |- | align= light| |} '''互质'''是公约数只有1的两个整数,叫做互质整数。公约数只有1的两个自然数,叫做互质自然数,后者是前者的特殊情形。 =='''简介'''== 互质,若N个整数的最大公因数是1,则称这N个[[整数]]互质。例如8,10的最大公因数是2,不是1,因此不是整数互质。7,11,13的最大公因数是1,因此这是整数互质。5和5不互质,因为5和5的公因数有1、5。1和任何数都成倍数关系,但和任何数都互质。因为1的因数只有1,而互质数的原则是:只要两数的公因数只有1时,就说两数是互质数。因为1只有一个因数所以1既不是质数(素数),也不是合数,无法再找到1和其他数的别的公因数了。1和-1与所有整数互素,而且它们是唯一与0互素的整数。互质数的写法:如c与m互质,则写作(c,m)=1。小学数学教材对互质数是这样定义的:“公约数只有1的两个数,叫做互质数。”这里所说的“两个数”是指自然数。“公约数只有 1”,不能误说成“没有公约数。”这里有一个误区,认为0不与任何数互质。严格地按照互质的定义来看0与1,-1均互质,通过任意有理数的表示方式a/b(a,b互质且b为正整数),同样可以得出0与1,-1均必须互质,否则0不是[[有理数]]。 =='''评价'''== (1)两个不同的质数一定是互质数。例如,2与7、13与19。(2)一个质数,另一个不为它的倍数,这两个数为互质数。例如,3与10、5与 26。(3)1不是质数也不是合数,它和任何一个自然数(1本身除外)在一起都是互质数。如1和9908。(4)相邻的两个自然数是互质数。如 15与 16。(5)相邻的两个奇数是互质数。如 49与 51。(6)较大数是质数的两个数是互质数。如97与88。(7)两个数都是合数(二数差又较大),较小数所有的质因数,都不是较大数的约数,这两个数是互质数。 如357与715,357=3×7×17,而3、7和17都不是715的约数,这两个数为互质数。(8)两个数都是合数(二数差较小),这两个数的差的所有质因数都不是较小数的约数,这两个数是互质数。如85和78。85-78=7,7不是78的约数,这两个数是互质数。(9)两个数都是合数,较大数除以较小数的余数(不为“0”且大于“ 1”)的所有质因数,都不是较小数的约数,这两个数是互质数。如 462与 221462÷221=2……20,20=2×2×5。2、5都不是221的约数,这两个数是互质数。(10)减除法。如255与182。255-182=73,观察知 73<82。182-(73×2)=36,显然 36<73。73-(36×2)=1,(255,182)=1。所以这两个数是互质数。三个或三个以上自然数互质有两种不同的情况:一种是这些成互质数的自然数是两两互质的。如2、3、5。另一种不是两两互质的。如6、8、9。<ref>[https://zhuanlan.zhihu.com/p/171756902 互质]搜狗</ref> =='''参考文献'''== [[Category:310 數學總論]]
返回「
互质
」頁面