導覽
近期變更
隨機頁面
新手上路
新頁面
優質條目評選
繁體
不转换
简体
繁體
3.147.85.11
登入
工具
閱讀
檢視原始碼
特殊頁面
頁面資訊
求真百科歡迎當事人提供第一手真實資料,洗刷冤屈,終結網路霸凌。
檢視 化圆为方 的原始碼
←
化圆为方
前往:
導覽
、
搜尋
由於下列原因,您沒有權限進行 編輯此頁面 的動作:
您請求的操作只有這個群組的使用者能使用:
用戶
您可以檢視並複製此頁面的原始碼。
{| class="wikitable" align="right" |- | style="background: #66CCFF" align= center| '''<big>化圆为方</big> ''' |- |<center><img src="https://gimg2.baidu.com/image_search/src=http%3A%2F%2Fpic4.zhimg.com%2Fv2-fcde8ba5c0643c51b3bf97e700a0724f_r.jpg&refer=http%3A%2F%2Fpic4.zhimg.com&app=2002&size=f9999,10000&q=a80&n=0&g=0n&fmt=auto?sec=1672554459&t=c43d058467d02a6837f1f214478e8298/400/fill/I0JBQkFCMA==/dissolve/70" width="250" ></center><small>[https://zhuanlan.zhihu.com/p/259876864 圖片來自知乎网网络]</small> |- | style="background: #66CCFF" align= center| |- | align= light| |} '''化圆为方'''是古希腊尺规作图问题之一,即:求一正方形,其面积等于一给定圆的面积。由π为超越数可知,该问题仅用直尺和圆规是无法完成的。但若放宽限制,这一问题可以通过特殊的曲线来完成。如西皮阿斯的割圆曲线,阿基米德的螺线等。 方圆的问题与提洛斯问题是同时代的,由希腊人开始研究。有名的阿基米德把这问题化成下述的形式:已知一圆的半径是r,圆周就是,则这三角形的面积就是: 与已知圆的面积相等。由这个直角三角形不难作出同面积的正方形来。但是如何作这直角三角形的边。即如何作一线段使其长等于一已知圆的周长,这问题阿基米德可就解不出了。 二千年间,尽管对化圆为方问题上的研究 没有成功,但却发现了一些特殊曲线。希腊安提丰(公元前430)为解决此问题而提出的 「穷竭法」,是近代极限论的雏形。大意是指先作圆内接正方形(或正6边形),然后每次 将边数加倍,得内接8、16、32、…边形,他相信「最后」的正多边形必与圆周重合, 这样就可以化圆为方了。虽然结论是错误的,但却提供了求圆面积的近似方法,成为阿基米德计算圆周率方法的先导,与中国刘徽的割圆术不谋而合,对穷竭法等科学方法的建立产生 直接影响。
返回「
化圆为方
」頁面