開啟主選單
求真百科
搜尋
檢視 图像识别 的原始碼
←
图像识别
由於下列原因,您沒有權限進行 編輯此頁面 的動作:
您請求的操作只有這個群組的使用者能使用:
用戶
您可以檢視並複製此頁面的原始碼。
{| class="wikitable" align="right" |- |<center><img src=https://www.kfzimg.com/G07/M00/6C/3D/qoYBAFv7Qu-ADVw6AAFKNvaVKIc300_s.jpg width="250"></center> <small>[https://search.kongfz.com/product_result/?key=%E5%9B%BE%E5%83%8F%E8%AF%86%E5%88%AB&status=0&_stpmt=eyJzZWFyY2hfdHlwZSI6ImFjdGl2ZSJ9 来自 孔夫子旧书网 的图片]</small> |} '''图像识别'''是全国科学技术名词审定委员会审定、公布的科技类名词。 关于中国[[文字]]的起源<ref>[https://www.sohu.com/na/585329105_121164128 中国汉字是怎样起源的?源始于殷商?文字有600年的历史?],搜狐,2022-09-15</ref>主要有两种观点:起源于刻画符号和“图画文字”起源说<ref>[https://www.sohu.com/a/146154600_594411 揭秘中国最古老的文字是来源图画还是记号?],搜狐,2017-06-05</ref>。我们现在已知的最早的文字是安阳殷墟出土的[[甲骨文]]。 ==名词解释== 图像识别,是指利用计算机对图像进行处理、分析和理解,以识别各种不同模式的目标和对象的技术,是应用深度学习算法的一种实践应用。现阶段图像识别技术一般分为人脸识别与商品识别,人脸识别主要运用在安全检查、[[身份]]核验与移动支付中;商品识别主要运用在商品流通[[过程]]中,特别是无人货架、智能零售柜等无人零售领域。 [[图像]]的传统识别流程分为四个步骤:图像采集→图像预处理→特征提取→图像识别。图像识别软件国外代表的有康耐视等,国内代表的有图智能、海深科技等。另外在地理学中指将遥感图像进行分类的技术。 识别基础 图像识别可能是以图像的主要特征为基础的。每个图像都有它的特征,如字母A有个尖,P有个圈、而Y的中心有个锐角等。对图像识别时眼动的研究表明,视线总是集中在图像的主要特征上,也就是集中在图像轮廓曲度最大或轮廓方向突然改变的地方,这些地方的信息量最大。而且眼睛的扫描路线也总是依次从一个特征转到另一个特征上。由此可见,在图像识别过程中,知觉机制必须排除输入的多余信息,抽出关键的信息。同时,在大脑里必定有一个负责整合信息的机制,它能把分阶段获得的信息整理成一个完整的知觉映象。 在人类图像识别系统中,对复杂图像的识别往往要通过不同层次的信息加工才能实现。对于熟悉的图形,由于掌握了它的主要特征,就会把它当作一个单元来识别,而不再注意它的细节了。这种由孤立的单元材料组成的整体单位叫做组块,每一个组块是同时被感知的。在文字材料的识别中,人们不仅可以把一个汉字的笔划或偏旁等单元组成一个组块,而且能把经常在一起出现的字或词组成组块单位来加以识别。 在计算机视觉识别系统中,图像内容通常用图像特征进行描述。事实上,基于计算机视觉的图像检索也可以分为类似文本搜索引擎的三个步骤:提取特征、建索引build以及查询。 相关领域 图像识别是人工智能的一个重要领域。为了编制模拟人类图像识别活动的计算机程序,人们提出了不同的图像识别模型。例如模板匹配模型。这种模型认为,识别某个图像,必须在过去的经验中有这个图像的记忆模式,又叫模板。当前的刺激如果能与大脑中的模板相匹配,这个图像也就被识别了。例如有一个字母A,如果在脑中有个A模板,字母A的大小、方位、形状都与这个A模板完全一致,字母A就被识别了。这个模型简单明了,也容易得到实际应用。但这种模型强调图像必须与脑中的模板完全符合才能加以识别,而事实上人不仅能识别与脑中的模板完全一致的图像,也能识别与模板不完全一致的图像。例如,人们不仅能识别某一个具体的字母A,也能识别印刷体的、手写体的、方向不正、大小不同的各种字母A。同时,人能识别的图像是大量的,如果所识别的每一个图像在脑中都有一个相应的模板,也是不可能的。 为了解决模板匹配模型存在的问题,格式塔心理学家又提出了一个原型匹配模型。这种模型认为,在长时记忆中存储的并不是所要识别的无数个模板,而是图像的某些“相似性”。从图像中抽象出来的“相似性”就可作为原型,拿它来检验所要识别的图像。如果能找到一个相似的原型,这个图像也就被识别了。这种模型从神经上和记忆探寻的过程上来看,都比模板匹配模型更适宜,而且还能说明对一些不规则的,但某些方面与原型相似的图像的识别。但是,这种模型没有说明人是怎样对相似的刺激进行辨别和加工的,它也难以在计算机程序中得到实现。因此又有人提出了一个更复杂的模型,即“泛魔”识别模型。 一般工业使用中,采用工业相机拍摄图片,然后利用软件根据图片灰阶差做处理后识别出有用信息,图像识别软件国外代表的有康耐视等,国内代表的有图智能等。 在人工智能中图像识别技术具有智能化、便捷化以及实用性的优势,为人们的生活与工作带来极大的便利。 ==参考文献== [[Category:800 語言學總論]]
返回「
图像识别
」頁面