6,579
次編輯
變更
世界七大数学难题
,無編輯摘要
{| class="wikitable" align="right"
|-
| style="background: #808000" align= center|'''<big>世界七大数学难题</big> '''
|-
|<center><img src=http://www.23book.com/upload/2017/06/23/ebded2340a3d0fbd.jpg width="250"></center><small>[http://www.23book.com/500000/492904.shtml 来自尚书坊的图片]</small>
|-
| style="background: #808000" align= center|'''<big>世界七大数学难题</big> '''
|-
| align= light|
'''中文名称''' :世界七大数学难题
'''领 域''' 这七个"世界难题"是:NP完全问题、霍奇猜想、庞加莱猜想、黎曼假设、杨·米尔斯理论、纳卫尔-斯托可方程、BSD猜想。这七个问题都被悬赏一百万美元。难题的提出20世纪是数学大发展的一个世纪。数学的许多重大难题得到完满解决, 如费马大定理的证明,有限单群分类工作的完成等, 从而使 : 数学 的基本理论得到空前发展。
'''时 间''' :2000年初|}'''<big>七大世界难题</big>'''"是:NP完全问题、霍奇猜想、庞加莱猜想、[[黎曼假设]]、杨·米尔斯理论、纳卫尔-斯托可方程、BSD猜想。这七个问题都被悬赏一百万美元。难题的提出20世纪是数学大发展的一个世纪。数学的许多重大难题得到完满解决, 如费马大定理的证明,有限单群分类工作的完成等, 从而使数学的基本理论得到空前发展。 效法希尔伯特, 许多当代世界著名的数学家在过去几年中整理和提出新的数学难题,希冀为新世纪数学的发展指明方向。 这些数学家知名度是高的, 但他们的这项行动并没有引起世界数学界的共同关注 。 2000 。2000 年初美国克雷数学研究所的科学顾问委员会选定了七个"千年大奖问题",克雷数学研究所的董事会决定建立七百万美元的大奖基金,每个"千年大奖问题"的解决都可获得百万美元的奖励。克雷数学研究所"千年大奖问题"的选定,其目的不是为了形成新世纪数学发展的新方向, 而是集中在对数学发展具有中心意义、数学家们梦寐以求而期待解决的重大难题 。 2000 。2000 年5月24日,千年数学会议在著名的法兰西学院举行。会上,97年菲尔兹奖获得者伽沃斯以"数学的重要性"为题作了演讲,其后,塔特和阿啼亚公布和介绍了这七个"千年大奖问题"。克雷数学研究所还邀请有关研究领域的专家对每一个问题进行了较详细的详述。克雷数学研究所对"千年大奖问题"的解决与获奖作了严格规定。每一个"千年大奖问题"获得解决并不能立即得奖。任何解决答案必须在具有世界声誉的数学杂志上发表两年后且得到数学界的认可,才有可能由克雷数学研究所的科学顾问委员会审查决定是否值得获得百万美元大奖. 折叠编辑本段数学难题世界七大数学难题
== 数学难题 ==
=== 世界七大数学难题: ===
这七个"千年大奖问题"是: NP完全问题、霍奇猜想、庞加莱猜想、黎曼假设、杨·米尔斯理论、纳卫尔-斯托可方程、BSD猜想
== 折叠 千年大奖问题==美国麻州的克雷(Clay)数学研究所于2000年5月24日在巴黎法兰西学院宣布了一件被媒体炒得火热的大事:对七个"千年数学难题"的每一个悬赏一百万美元。 其中有一个已被解决(庞加莱猜想),还剩六个.(庞加莱猜想,已由俄罗斯数学家格里戈里·佩雷尔曼破解。) "千年大奖问题"公布以来, 在世界数学界产生了强烈反响。这些问题都是关于数学基本理论的,但这些问题的解决将对数学理论的发展和应用的深化产生巨大推动。认识和研究"千年大奖问题"已成为世界数学界的热点。不少国家的数学家正在组织联合攻关。 可以预期, "千年大奖问题" 将会改变新世纪数学发展的历史进程。
在一个周六的晚上,你参加了一个盛大的晚会。由于感到局促不安,你想知道这一大厅中是否有你已经认识的人。你的主人向你提议说,你一定认识那位正在甜点盘附近角落的女士罗丝。不费一秒钟,你就能向那里扫视,并且发现你的主人是正确的。然而,如果没有这样的暗示,你就必须环顾整个大厅,一个个地审视每一个人,看是否有你认识的人。生成问题的一个解通常比验证一个给定的解时间花费要多得多。这是这种一般现象的一个例子。与此类似的是,如果某人告诉你,数13,717,421可以写成两个较小的数的乘积,你可能不知道是否应该相信他,但是如果他告诉你它可以因式分解为3607乘上3803,那么你就可以用一个袖珍计算器容易验证这是对的。人们发现,所有的完全多项式非确定性问题,都可以转换为一类叫做满足性问题的逻辑运算问题。既然这类问题的所有可能答案,都可以在多项式时间内计算,人们于是就猜想,是否这类问题,存在一个确定性算法,可以在多项式时间内,直接算出或是搜寻出正确的答案呢?这就是著名的NP=P?的猜想。 不管我们编写程序是否灵巧,判定一个答案是可以很快利用内部知识来验证,还是没有这样的提示而需要花费大量时间来求解,被看作逻辑和计算机科学中最突出的问题之一。它是斯蒂文·考克于1971年陈述的。
二十世纪的数学家们发现了研究复杂对象的形状的强有力的办法。基本想法是问在怎样的程度上,我们可以把给定对象的形状通过把维数不断增加的简单几何营造块粘合在一起来形成。这种技巧是变得如此有用,使得它可以用许多不同的方式来推广;最终导致一些强有力的工具,使数学家在对他们研究中所遇到的形形色色的对象进行分类时取得巨大的进展。不幸的是,在这一推广中,程序的几何出发点变得模糊起来。在某种意义下,必须加上某些没有任何几何解释的部件。霍奇猜想断言,对于所谓射影代数簇这种特别完美的空间类型来说,称作霍奇闭链的部件实际上是称作代数闭链的几何部件的(有理线性)组合。
== [[黎曼]](Riemann)假设 == 在2002年11月和2003年7月之间 有些数具有不能表示为两个更小的数的乘积的特殊性质,例如,2、3、5、7……等等。这样的数称为素数;它们在纯数学及其应用中都起着重要作用。在所有自然数中 , 俄罗斯 这种素数的分布并不遵循任何有规则 的 模式;然而,德国 数学家 格里戈里·佩雷 黎曼(1826~1866)观察到,素数的频率紧密相关于一个精心构造的所谓黎曼蔡塔函数z(s)的性态。著名的黎曼假设断言,方程z(s)=0的所有有意义的解都在一条直线上。这点已经对于开始的1,500,000,000个解验证过。证明它对于每一个有意义的解都成立将为围绕素数分布的许多奥秘带来光明。 == 杨-米 尔 曼 斯(Yang-Mills)存 在 性和质量缺口 ==量子物理的定律是以经典力学的牛顿定律对宏观世界的方式对基本粒子世界成立的。大约半个世纪以前,杨振宁和米尔斯 发 表 现,量子物理揭示 了 三篇论 在基本粒子物理与几何对象的数学之间的令人注目的关系。基于杨-米尔斯方程的预言已经在如下的全世界范围内的实验室中所履行的高能实验中得到证实:布罗克哈 文 预印本 、斯坦福、欧洲粒子物理研究所和筑波。尽管如此,他们的既描述重粒子、又在数学上严格的方程没有已知的解。特别是 , 被大多数物理学家所确认、 并 声称 且在他们的对于"夸克"的不可见性的解释中应用的"质量缺口"假设,从来没有得到一个数学上令人满意的 证 明了几何化猜想 实。在这一问题上的进展需要在物理上和数学上两方面引进根本上的新观念 。
== 纳维叶-斯托克斯方程的存在性与光滑性 ==起伏的波浪跟随着我们的正 在 佩雷尔曼之后 湖中蜿蜒穿梭的小船 , 先后有3组研究者发表论文补全佩雷尔曼给出 湍急的气流跟随着我们 的 证明中缺少 现代喷气式飞机 的 细节 飞行 。 这包括密西根大 数学家和物理 学 的布鲁 家深信,无论是微风还是湍流,都可以通过理解纳维叶- 斯 · 托 克 莱纳 斯方程的解,来对它们进行解释 和 约翰·洛特;哥伦比亚大学 预言。虽然这些方程是19世纪写下的,我们对它们 的 约翰·摩根和麻省 理 工 解仍然极少。挑战在于对数 学 院的田刚;以及 理 海大学 论作出实质性 的 曹怀东和 进展,使我们能解开隐藏在纳维叶-斯托克斯方程 中 山大学 的 朱熹平 奥秘 。
== 折叠黎曼(Riemann)假设有些数具有不能表示为两个更小的数的乘积的特殊性质,例如,2、3、5、7……等等。这样的数称为素数;它们在纯数学及其应用中都起着重要作用。在所有自然数中,这种素数的分布并不遵循任何有规则的模式;然而,德国数学家黎曼(1826~1866)观察到,素数的频率紧密 相关 于一个精心构造的所谓黎曼蔡塔函数z(s)的性态。著名的黎曼假设断言,方程z(s)视频 ==0的所有有意义的解都在一条直线上。这点已经对于开始的1,500,000,000个解验证过。证明它对于每一个有意义的解都成立将为围绕素数分布的许多奥秘带来光明。
== 折叠纳维叶-斯托克斯方程的存在性与光滑性起伏的波浪跟随着我们的正在湖中蜿蜒穿梭的小船,湍急的气流跟随着我们的现代喷气式飞机的飞行。数学家和物理学家深信,无论是微风还是湍流,都可以通过理解纳维叶-斯托克斯方程的解,来对它们进行解释和预言。虽然这些方程是19世纪写下的,我们对它们的理解仍然极少。挑战在于对数学理论作出实质性的进展,使我们能解开隐藏在纳维叶-斯托克斯方程中的奥秘。相关资讯 ==
[[Category:310 折叠贝赫和斯维讷通-戴尔猜想数学家总是被诸如x^2+y^2=z^2那样的代数方程的所有整数解的刻画问题着迷。欧几里德曾经对这一方程给出完全的解答,但是对于更为复杂的方程,这就变得极为困难。事实上,正如马蒂雅谢维奇指出,希尔伯特第十问题是不可解的,即,不存在一般的方法来确定这样的方法是否有一个整数解。当解是一个阿贝尔簇的点时,贝赫和斯维讷通-戴尔猜想认为,有理点的群的大小与一个有关的蔡塔函数z(s)在点s=1附近的性态。特别是,这个有趣的猜想认为,如果z(1)等于0,那么存在无限多个有理点(解),相反,如果z(1)不等于0,那么只存在有限多个这样的点。數學總論]]