求真百科歡迎當事人提供第一手真實資料,洗刷冤屈,終結網路霸凌。

變更

前往: 導覽搜尋

壳聚糖

增加 770 位元組, 4 年前
無編輯摘要
[[File:201011684676210002.jpg|thumb|right| [http://www.bbwfish.com/UploadFiles/ArticleFiles/2010/11/201011684819907/20101168467621.jpg 原图链接] [https://www.low1314.cn/article/yu-86734.html 图片来自达奇钓鱼论坛网] ]]
'''壳聚糖'''(chitosan)甲壳素N-脱乙酰基的产物,甲壳素、 [[ 壳聚糖 ]] 、纤维素三者具有相近的化学结构,纤维素在C2位上是羟基,甲壳素、壳聚糖在C2位上分别被一个乙酰氨基和氨基所代替,甲壳素和壳聚糖具有生物降解性、 [[ 细胞 ]] 亲和性和生物效应等许多独特的性质,尤其是含有游离氨基的壳聚糖,是天然多糖中唯一的碱性多糖。<ref>[https://xueshu.baidu.com/usercenter/paper/show?paperid=7b0e24cf2e9b397a75f8fb6a4760f743&site=xueshu_se 壳聚糖降解研究的最新进展] </ref> 壳聚糖分子结构中的氨基基团比甲壳素分子中的乙酰氨基基团反应活性更强,使得该多糖具有优异的生物学功能并能进行化学修饰反应。因此,壳聚糖被认为是比 [[ 纤维素 ]] 具有更大应用潜力的功能性生物材料。 壳聚糖为天然多糖甲壳素脱除部分乙酰基的产物,具有 [[ 生物降解性 ]] 、生物相容性、无毒性、抑菌、抗癌、降脂、增强免疫等多种生理功能,广泛应用于食品添加剂、纺织、农业、环保、美容保健、化妆品、抗菌剂、医用纤维、医用敷料、人造组织材料、药物缓释材料、 [[ 基因 ]] 转导载体、生物医用领域、医用可吸收材料、组织工程载体材料、医疗以及药物开发等众多领域和其他日用化学工业。中文名: 壳聚糖  
英文名: chitosan
 又 称 :脱乙酰甲壳素  
基本结构地位: 壳二糖
 
应用方: 医药、食品、化工、化妆品
 
发现者: Rouget
==研究历史==
在虾蟹等海洋节肢动物的甲壳、昆虫的甲壳、菌类和藻类细胞膜、软体动物的壳和骨骼及高等植物的细胞壁中存在大量甲壳素。 [[ 甲壳素 ]] 在自然界分布广泛,储量仅居于纤维素之后,是第二大天然高分子,每年甲壳素生物合成的量约有100亿吨,是一种可循环的再生资源,取之不尽、用之不竭,这些天然聚合物的主要分布在沿海地区,印度、波兰、日本、美国、挪威和澳大利亚等国家,壳聚糖已经商业化生产  甲壳素(chitin)首先是由法国研究自然科学史的布拉克诺(H.Bracolmot)教授于1811年在蘑菇中发现,并命名为Fungine。1823年,另一位法国科学家奥吉尔从甲壳类昆虫的翅鞘中分离出同样的物质,并命名为几丁质;1859年,法国科学家C.Rouget将甲壳素浸泡在浓KOH溶液中,煮沸一段时间,取出洗净后发现其可溶于有机酸中;1894年,德国人Ledderhose确认Rouget制备的改性甲壳素是脱掉了部分乙酰基的甲壳素,并命名为chitosan,即壳聚糖;1939年Haworth获得了一种无争议的合成方法,确定了甲壳素的结构;1936年美国人Rigby获得了有关甲壳素/壳聚糖的一系列授权专利,描述了从虾壳、蟹壳中分离甲壳素的方法,制备甲壳素和甲壳素衍生物的方法,制备壳聚糖溶液、壳聚糖膜和壳聚糖纤维的方法;1963年Budall提出甲壳素存在着三种晶形;20世纪70年代,对甲壳素的研究增多;20世纪80-90年代,对甲壳素/壳聚糖研究进入全盛时代
甲壳素(chitin)首先是由法国研究自然科学史的布拉克诺(H.Bracolmot)教授于1811年在蘑菇中发现,并命名为Fungine。1823年,另一位法国科学家奥吉尔从甲壳类昆虫的翅鞘中分离出同样的物质,并命名为几丁质;1859年,法国科学家C.Rouget将甲壳素浸泡在浓KOH溶液中,煮沸一段时间,取出洗净后发现其可溶于有机酸中;1894年,德国人Ledderhose确认Rouget制备的改性甲壳素是脱掉了部分乙酰基的甲壳素,并命名为chitosan,即壳聚糖;1939年Haworth获得了一种无争议的合成方法,确定了甲壳素的结构;1936年美国人Rigby获得了有关甲壳素/壳聚糖的一系列授权专利,描述了从虾壳、[[蟹壳]]中分离甲壳素的方法,制备甲壳素和甲壳素衍生物的方法,制备壳聚糖溶液、壳聚糖膜和壳聚糖纤维的方法;1963年Budall提出甲壳素存在着三种晶形;20世纪70年代,对甲壳素的研究增多;20世纪80-90年代,对甲壳素/壳聚糖研究进入全盛时代。<ref>[http://muchong.com/html/201401/6826592.html 壳聚糖目前的研究进展] </ref>
==应用方向==
壳聚糖被发现已经有100多年,也有许多人在对它进行研究,广泛应用于农业、食品、 [[ 医疗 ]] 、工业。
甲壳素及其衍生物的用途大量研究表明,甲壳质及其衍生物具有成膜性、可纺性、抗凝血性,促进伤口愈合等功能。因此,甲壳质及其衍生物在食品、生化、医药、日用化妆品及污水处理等众多领域得到广泛的应用,将其主要用途归纳如下。
===在食品工业中的应用===
壳聚糖在食品工业中可作为黏结剂、保湿剂、澄清剂、填充剂、乳化剂、上光剂及增稠稳定剂;而作为功能性低聚糖,能降低胆固醇,提高机体 [[ 免疫力 ]] ,增强机体的抗病抗感染能力,尤其有较强的抗肿瘤作用。因其资源丰富,应用价值高,已被大量开发使用。工业上多用酶法或酸法水解虾皮或蟹壳来提取壳聚糖。
1.作为固定酶载体
壳聚糖可用于在蔬菜保鲜、肉制品保鲜、海产品保鲜、淀粉、大豆制品保鲜以及蛋、乳与豆制品保鲜。
果蔬摘采后由于生理成熟作用影响,其会软化,导致硬度下降,给运输带来困难,品质、营养价值下降,对细菌的抵御能力也随之减弱。因此,怎样对果蔬进行保鲜长期受到人们的关注。壳聚糖具有成膜性,不仅对人体无害,还具有生理保健作用,其对果蔬的保护作用越来越得到人们的肯定。将壳聚糖覆盖于果蔬表面,可减少 [[ 果蔬 ]] 的蒸腾作用,而且对气体有一定的选择渗透作用,能阻挡外界O2进入膜内,提高果蔬组织内CO2的含量和减少乙烯逸出,从而降低了果蔬呼吸代谢强度,减缓果蔬熟化,达到保鲜目的。
壳聚糖对冷却猪肉有明显的保鲜作用,且脱乙酰度越高的壳聚糖对冷却肉的保鲜效果越好。溶于1%醋酸的1%壳聚糖溶液能使冷却肉的货架期达到1周,且冷却肉的感官品质好;2.5%的水溶性壳聚糖溶液的保鲜效果略低于1%酸溶性壳聚糖,但水溶性壳聚糖处理的冷却肉样品完全没有酸味,且感官品质良好。
壳聚糖对于富含不饱和脂肪酸类的海产食品,是优良的天然抗菌抗氧化剂-由雪蟹制备的不同分子质量的壳聚糖,浓度为50-200mg/kg,可有效控制鳕鱼肉在烹煮过程中的脂类氧化,而且浓度越高,抗氧化能力越强。 <ref>[https://wenku.baidu.com/view/53cf7e0df12d2af90242e630.html 壳聚糖及其衍生物的抗氧化性能及应用研究进展] </ref>
===在日用化学方面的应用===
用壳聚糖作为药物载体可以稳定药物中的成分,促进药物吸收,延缓或控制药物的溶解速度,帮助药物达到靶器官,并且抗酸、抗溃疡,防止药物对胃的刺激。
壳聚糖可用于制备微球,制成的微球黏附性好,比较适于口、鼻、胃肠等黏膜给药;壳聚糖微球表面富有多糖链,能被特异性细胞或组织所识别,可靶向投递药物至病灶部位贮存、释放;壳聚糖微球表面可接功能基团,以吸附或包裹的方式灵活负载不同药物。壳聚糖载药微球药物 [[ 释放 ]] 与壳聚糖分子量有关,一般药物的释放速率随壳聚糖的分子量增大而减小,且壳聚糖浓度越高,药物从壳聚糖中扩散进入生物介质的速率越低。
2.成膜材料
3.增稠剂壳聚糖作增稠剂时,随着浓度增加,溶液黏度增大;当浓度较高时,浓溶液的黏度表现触变性。当温度升高时,其黏度减小,规律和一般高聚物浓溶液的流动规律一致。
4.靶向制剂材料壳聚糖及其衍生物可用作靶向制剂材料。其结构单元含有羟基、氨基等官能团,可用于连接细胞外或细胞内的靶向配体,从而构建靶向药物载体用于靶向给药治疗。以壳聚糖为载体材料的靶向制剂剂型有很多,主要以纳米粒和微球为主。 <ref>[https://xueshu.baidu.com/usercenter/paper/show?paperid=a190f0e2716de9e486546136b7c586d1&site=xueshu_se 壳聚糖/银纳米微球的制备与表征] </ref>
5.其他应用 壳聚糖可作为片剂填充剂及矫味剂使用。壳聚糖生物相容性和生物可降解性良好,降解产物可被人体吸收,在体内不蓄积,无免疫原性,可制成吸收型外科手术缝合线。
[[File:Kejutang001.jpg|thumb|center| [http://www.szddke.com/upimg/d2020021814010880.jpg 原图链接] [http://www.szddke.com/product_show.php?id=222 图片来自大地康恩网] ]]
【注意事项】与强氧化剂有配伍禁忌。
1.制法
将2g壳聚糖溶于100ml0.2mol/L醋酸溶液中配制成质量浓度为20g/L的壳聚糖溶液。按氟尿嘧啶:壳聚糖为1:6称取相应量的氟尿嘧啶投放到25g上述壳聚糖醋酸溶液中,搅拌使其完全溶解后,慢慢加入到盛有200g/L司盘80和5g/L硬脂酸镁的混合油中(真空泵油:液状石蜡=1:4),充分搅拌至体系呈乳液状,维持0.5小时,向乳液分散体系中加入相应量的戊二醛溶液,在40℃反应2小时,用 [[ 氢氧化钠 ]] 溶液调节pH约为7,继续反应1小时。离心分离产物,先用汽油洗涤,再用无水乙醇洗涤。最后在50℃真空干燥,得到产品。
2.解析
本品又名脱乙酰甲壳质、可溶性甲壳素、聚氨基葡萄糖,为类白色粉末,无臭,无味。本品微溶于水,几乎不溶于乙醇。本品是一种阳离子聚胺,在pH<6.5时电荷密度高(因此可吸附于阴离子表面并可与金属离子螯合)。本品是一种带有活泼羟基与氨基的线型聚电解质(可进行化学反应和成盐)。
纯净的壳聚糖为白色或灰白色半透明的片状固体,溶于稀酸呈黏稠状,在稀酸中壳聚糖的β-1,4-糖苷键会慢慢水解,生成低相对分子质量的壳聚糖。溶于酸性溶液形成带正电的阳离子基团。壳聚糖在溶液中是带正电荷的多聚电解质,具有很强的吸附性。壳聚糖分子中含有氨基,具有碱性,在胃酸的条件下可生成铵盐,可以使肠内pH值转为碱性,改善酸性体质。甲壳素对人体细胞有很强的亲和性,进入人体内的甲壳素被分解成基本单位。人体内存在的葡萄糖胺。而乙酰葡萄糖胺是体内透明质酸的基本组成单位。因此甲壳素和壳聚糖对人体细胞有很好的亲和性,不会产生排斥反应。
甲壳索在反应中生成带正电荷的阳离子基团,这是自然界中唯一存在的带正电荷的可食性食物纤维。甲壳素食物纤维单独食用是不易被消化吸收的,如果与牛奶、鸡蛋、蔬菜、植物性食品等一起食用就可以被吸收,这是因为在壳糖胺酶、去乙酰酶(在植物和肠内细菌中存在)、 [[ 溶菌酶 ]] (体内存在)及卵磷脂(牛奶、鸡蛋中存在)等共同作用下甲壳素可以被分解成寡聚糖,低相对分子质量的寡聚糖可以被吸收,吸收部位主要在大肠。
壳聚糖的溶解性与脱乙酰度、相对分子质量、黏度有关,脱乙酰度越高,相对分子质量越小,越易溶于水;脱乙酰度越低,相对分子质量越大,黏度越大。壳聚糖具有很好的吸附性、成膜性、通透性、成纤性、吸湿性和保湿性。脱乙酰度和黏度(平均相对分子质疑)是壳聚糖的两项主要性能指标。
脱乙酰度(degreeofdeacetylation,DD)是脱去乙酰基的葡萄糖胺单元数占总的葡萄糖胺单元数的比例,它是考察甲壳素/壳聚糖最基本的结构参数之一。脱乙酰度对壳聚糖的溶解性能、黏度、离子交换能力以及絮凝性能等都有重大影响。通常,脱去55%以上N乙酰基的甲壳素能溶于1%乙酸或盐酸,被称为壳聚糖,但脱乙酰度在70%以上的壳聚糖才能作为有使用价值的工业品。脱乙酰度在55%-70%、70%-85%、85%-95%、95%-100%的壳聚糖分别称为低脱乙酰度壳聚糖、中脱乙酰度壳聚糖、高脱乙酰度壳聚糖、超高脱乙酰度壳聚糖,极难制备脱乙酰度为100%的壳聚糖。
壳聚糖在水、乙醇和丙酮中不溶解,在无机酸和酒石酸、水杨酸、抗坏血酸等有机酸及许多稀酸溶液中能 [[ 溶解 ]] 。壳聚糖分子中的-NH2,基团在酸性环境中会被质子化形成 NH3+离子,从而在酸性条件下会溶解。而甲壳素的N-乙酰基不能质子化所以无溶解性,可见壳聚糖的脱乙酰化度与溶解性关系密切。脱乙酰化度在50%以下、60%-80%、80%以上的壳聚糖溶解状态分别为部分离析溶解于稀醋酸溶液中、呈絮凝态悬浮于稀醋酸溶液中、以油状清澈地溶于稀醋酸溶液中,脱乙酰度在50%以下的,肯定不溶于浓度1%的烯酸。由此可见,甲壳素与壳聚糖的差别,仅仅是脱乙酰度不同而已。制备高脱乙酰度的壳聚糖在开发壳聚糖产品过程中非常重要,因为脱乙酰度可以决定甲壳素的溶解性,也是对其进行化学修饰功能化改性的前提条件。通常使用的高脱乙酰度中低相对分子质量、低黏度的壳聚糖都需要将厂家商品进一步水解、降解处理。
在特定的条件下,壳聚糖能发生水解、烷基化、酰基化、羧甲基化、磺化、硝化、卤化、氧化、还原、缩合和络合等化学反应,可生成各种具有不同性能的壳聚糖衍生物,从而扩大了壳聚糖的应用范围。
==抗菌性能==
壳聚糖具有较强的 [[ 抗真菌性 ]] 的事实已为人熟知。Alen等人对46种真菌的抑菌实验发现壳聚糖对薄状菌属、脉孢菌属、座线孢菌属等32种真菌具有抑制作用。一般地,当壳聚糖的浓度达到100μg/mL时,即可表现出抗真菌性,且抗真菌性与壳聚糖颗粒的大小成反比。壳聚糖的聚合度对其抗真菌性有较大的影响,聚合度降低,则壳聚糖所能抑制的真菌种类减少,但抑制的程度加强。Kendra等人还发现,七聚体的壳聚糖具有最强的抗真菌性。
壳聚糖对大肠杆菌、荧光假单胞菌、金黄色葡萄球菌、枯草杆菌等有良好的抑制作用,并且还能抑制鲜活食品的生理变化。壳聚糖天然无毒,适用于偏酸性及含蛋白质少的食品保鲜,遇高分子和离子性复合物可凝集。例如水果的防腐保鲜,用量为醋酸0.1%+壳聚糖0. 05%-0.1%。
酰化甲壳素和壳聚糖可吸附金属离子,且取代度、取代基体积对金属离子的吸附有影响,如乙酰化或壬酰化壳聚糖的取代度越低,对Cu(Ⅱ)的吸附量越大,少量酰基会破坏壳聚糖的晶体结构,占据功能基团氨基的位置较少,因而对金属的吸附量增加。辛酰基、苯酰基和月桂酰基壳聚糖衍生物对L型氨基酸比D型吸附量大,利用这一性质可以有效拆分氨基酸的旋光异构体,并且取代度越低,拆分效果越好。苯甲酰化壳聚糖薄膜,可用来分离苯-环己胺的混合物。3,4,6-三甲氧基苯甲酰甲壳素在化妆品工业中,可用于吸收紫外线、防晒护肤。磺酸化的壳聚糖衍生物在医药领域有重要用途,如C3位O-磺酸化的甲壳素衍生物,有较强的抗病毒活性,对HIV病毒有很好的抑制作用,C6位的O-磺酸基甲壳素有抗凝血功能。
因其分子中带有游离氨基,在酸性溶液中易成盐,呈 [[ 阳离子 ]] 性质。壳聚糖随其分子中含氨基组分数量的增多,其氨基特性更显著,这正是其独特性质所在,由此奠定了壳聚糖的许多生物学特性及加工特性的基础。
==鉴别检查==
密闭、凉暗处干燥保存。
==视频==
 
CCTV10走近科学-杜予民-壳聚糖壳寡糖功能性质<br>
 
{{#iDisplay:s0810pi2lhm | 560 | 390 | qq }}
 
==参考文献==
{{Reflist}}
Category:368 生物技術
762
次編輯