開啟主選單

求真百科

變更

光学

增加 834 位元組, 1 年前
無編輯摘要
'''光學''',是[[物理學]]的分支,主要是研究[[ File: ]]的現象、性質與應用,包括光與物質之間的相互作用、光學儀器的製作。光學通常研究[学.jpg|350px|缩略图|右|<big></big>[ 紅外線]https://img.51wendang.com/pic/c424c6458145f76e86f8d0ed/5-810-jpg_6-1080-0-0-1080.jpg 原图链接] [[紫外線]]及[[可見光]] http://www.51wendang.com/doc/c424c6458145f76e86f8d0ed/5 来自 无忧文档 物理行為。因為光是[[電磁波]],其它形式的電磁輻射,例如[[X射線]]、[[微波]图片] 、[[電磁輻射]] 及[[無線電波]]等等也具有類似光的特性。
大多數常見的 ''' 學現象都可以用学'''(''' optics''' ),是[[ 古典電动力學物理学]] 理論來說明。但 的分支,主要 ,通常這全套理論很難實際應用,必需先假定簡單模型。研究[[ 幾何 ]]的 模型最為容易使 现象、性质与应 。它試圖將 ,包括光与物质之间的相互作用、 学仪器的制 射線( 線),能夠直線移動,並且在遇到不同介質時會改變方向;它能夠解釋像直線傳播、学通常研究[[ 反射红外线]]、[[ 折射紫外线]] 等等很多光線現象。[[ 可见光]]的 物理 行为。因为 是[[电磁波]] 的模型比較精密 把光當作是傳播於介質 形式 电磁辐射,例如[[ 波動X射线]] (光波)。除了反射 折射以外,它還能夠以 [[微 性質來解釋向前傳播 ]] 、[[ 干涉 (物理学)|干涉电磁辐射]] [[ 偏振无线电波]]等等 也具有类似 學現象。幾何光學不能解釋這些比較複雜 光學現象 特性 在歷史上,光的射線模形首先被發展完善,然後才是光的波動模形.
数常见的光学现 涉及到光的都可以用[[ 波粒二象性古典电动力学]] 理论来说明。但是,通常这全套理论很难实际应用,必需先假定简单模型 只有[[ 量子力學几何光学]] 的模型最为容易使用。它试图将光当作射线(光线), 够直线移动,并且在遇到不同介质时会改变方向;它能够 釋這些現 释像直线传播、[[反射]]、[[折射]]等等很多光线现 象。 在量子力學裏,光被視為由一群稱為[[ 物理 ]] 的模型比较精密,它把光当作是传播于介质 的[[ 粒子波动]] 組成 (光波) 除了反射、折射以外,它还能够以波性质来解释向前传播、[[干涉 (物理学)|干涉]]、[ 量子光學[偏振]] 專門研究怎樣用量子力學來 等等光学现象。几何光学不能 释这些比较复杂的 學現 学现 。在历史上,光的射线模形首先被发展完善,然后才是光的波动模形
進一步將 很多现象涉及到 的[[波粒二象性]]。只有[[量子力 細分類。 ]]能够解释这些现象<ref>[https://v.youku.com/v_show/id_XMzUwMTYzNjM4MA==.html 量子力学1.1- 光的 纯科 波粒二象性_高清],优酷,2018-3-30</ref>。在量子力 领域 通常 光学或「光学物理」。应用光学通常被 由一群 称为[[光 学工程]] 。光学工程中涉及到[[ 照明粒子]] 系统的部分,被特别称为「照明工程」。每一个分支在应用、技术、焦点以及专业关联上,都有很大不同 组成 在光学工程中,比较新的发现,通常被归类为[[ 量子 学]] (photonics) 专门研究怎样用量子力学来解释光学现象
因为 进一步将 光学 在实际中被广泛应用,光学物理和工程 细分类。 的纯科 ,在 领域 有很大程度的互相交叉。 通常被称为光学或「 光学 也与电子工程、 物理 」。应用光 、天文學、医学(尤其是通常被称为[[ 眼科 工程]] 。光学工程中涉及到[[ 視光學照明]] )等许多学科密切相关 系统的部分,被特别称为「照明工程」 很多關鍵科 每一个分支在应用、 术、焦点以及专业关联上, 能找到 有很大不同。在 学工程中,比较新 研究果實 发现 包括通常被归类为[[ ]] 、[[透鏡]]、[[望遠鏡]]、[[顯微鏡]]、[[激光]]、[[光纖]]、[[發光二極體]]、[[光伏]]等等 (photonics)
== 经典 因为 學 ==学在实际中被广泛应用,光学物理和工程光学,在领域上,有很大程度的互相交叉。光学也与电子工程、物理学、天文学、医学(尤其是[[眼科学]]与[[视光学]])等许多学科密切相关。很多关键科技都能找到光学的研究果实,包括[[镜子]]、[[透镜]]、[[望远镜]]、[[显微镜]]、[[激光]]、[[光纤]]、[[发光二极管]]、[[光伏]]等等。
==经典光学== 在[[量子光 ]]的重要性被揭示之前,光学的基本理论主要是经典电磁场理论以及它在光学领域的。经典光学可以分成两个主要分支:[[几何光学]]与[[物理光学]]。
=== 几何光学 ===
[[几何光学]],又称射线光学,描述了[[光]]的[[波的传播|传播]]。在几何光学中,光被称作是 "[[射线]]"(光线)。光线会在两种不同介质的界面改变传播方向,并有可能在[[折射率]]随位置变化的介质中发生曲线弯折的现象。几何光学中的“光线”是抽象的物体,它的前进方向垂直于光波的[[波前]]。几何光学给出了光线通过光学系统的传播规律,以此可以预测其实际波前的位置。[[ 費馬 费马 原理]]是 何光 的基本定理:光传播的路径是光以最短 時間 时间 的路径由此可以推 多几何光学的定律。考 由[[透镜]]、[[反射镜]]及[[棱镜]] 合而成的光学系统,用几何光学可以 明其中的[[光的反射定律|反射]]、[[折射]]等 象,需要注意的是,几何光学简化了光学理论,因此它无法解释很多重要的光学效应,例如:[[ 射]]、[[偏振]]等。 通过[[近轴近似]](也称为小角近似),可以对几何光学做进一步简化,并对应于数学描述上的线性化。在近轴近似条件下,光学组件和系统可以通过简单的矩阵来表示。[[高斯光学]]以及近轴都是以近轴近似的基础进行发展,可以确定光学系统的一阶特性,例如找出成像位置、物体位置以及[[放大倍率]]的近似值等[[高斯光束|高斯光束传播]]是近轴光学的扩展,它可以更为精确地描述相干传播(如[[激光]]光束)。即使仍然使用近轴近似,这一技术可以部分描述衍射,能够精确计算激光束随距离传播的速率以及其最小的汇聚尺寸。高斯光束传播理论因此可以沟通几何光学与物理光学。 ===物理光学===
通过[[ 近轴近似物理光学]] (也稱為小角近似) 可以对几何 或称波动 光学 做进一步简化 并对应于数学描述上的线性化。 建立 近轴近似条件下,光学元件和系统可以通过简单的矩阵来表示。[[ 惠更 光学原理]] 以及近轴都是以近轴近似的基礎進行發展 之上 ,可以 确定 建立复波前(包括[[振幅]]与[[相位]])通过 光学系统的 模型。这 阶特性,例如找出成像位置 技术能够利用计算机数值仿真模拟或计算[[衍射]] [[干涉_( 體位置以及理学)|干涉]]、[[散射]]、[[ 放大倍率偏振]] 的近似值等特性、[[ 高斯光束|高斯光束传播像差]] 是近轴 等各种复杂 光学 的扩展,它可以更为精确地描述相干传播(如现象。[[ 物理 ]] 名称中的「物理」表示它比几何 束) 学更接近物理原理,但仍然只是物理理论的近似而已 即使 由于 仍然 使用近轴 有所 近似, 这一技术可以部分 因此物理光学不能像电磁波理论模型那样能够全面 描述 衍射 光传播。对于大多数实际问题来说 能够精确 完整[[电磁波]]理论模型 计算 激光束随距离传播 量太大,在现在 速率以及其最 一般计算机硬件条件下并不十分实用,但 尺度 汇聚尺寸。高斯光束传播理论因此 问题 可以 沟通几何光学与物理光学 使用完整波动模型进行计算
=== 物理 近代 光学 ===[[物理光学]],或称波动光学,建立在[[惠更斯原理]]之上,可以建立复波前(包括[[振幅]]与[[相位]])通过光学系统的模型。这一技术能够利用计算机数值仿真模拟或计算[[衍射]]、[[干涉_(物理学)|干涉]]、[[散射]]、[[偏振]]特性、[[像差]]等各种复杂光学现象。[[物理光学]]名稱中的「物理」表示它比幾何光學更接近物理原理,但仍然只是物理理論的近似而已。由于仍然有所近似,因此物理光学不能像电磁波理论模型那样能够全面描述光传播。对于大多数实际问题来说,完整[[电磁波]]理论模型计算量太大,在现在的一般计算机硬件条件下并不十分实用,但小尺度的问题可以使用完整波动模型进行计算。
== 近代光學 ==
近代光学包括了二十世纪开始研究的光学科学及光学工程。光学科学部份一般会和光的[[电磁]]特性或是[[量子]]特性([[光子]])有关,不过也包括其他领域。[[量子光学]]是近代光学的主要子领域之一,处理光的[[量子力学]]特性。量子光学不只是理论而已,像[[雷射]]等现代光学设备其中的原理都是以量子光学为基础。像[[光电倍增管]]或[[电子倍增管]]等光侦测器可以对单一[[光子]]反应。像[[感光耦合组件]]等电子式的[[图像传感器]],也会因为个别光子的统计特性而出现[[散粒噪声]]。若没有量子力学,也就无法理解[[发光二极管]]及[[太阳能电池]]的原理。量子光学常和量子电子学重迭特别领域的光学研究也包括光和特定材料之间的关系(如及[[超材料]]),其他的研究包括电磁波的现象,以及[[光学涡旋]]、、[[非线性光学]]、统计光学、[[亮度学]]及[[辐射度量学]]等。此外,计算机工程师对[[积体光学]]、[[机器视觉]]及[[光学计算机|光学计算]]等有兴趣,这些可能是下一代计算机中的重要组件。
近代 现在, 學包括了二十世紀開始研究 学中纯物理 光學科學及光學工程。光學科學 部份 一般會和光的会称为[[ 電磁光物理学]] 特性 ,和光学中应用科学 是[[量子]]特性(工程的部份分开,后者则称为[[光 电工程]] )有關,不過也包括其他領域 [[量子 學]]是近代光學 电工程 的主要 子領 之一,處理光的包括有[[ 量子力學照明]] 特性。量子光學不只是理論而已,像工程、[[ 雷射光子学]] 等現代光學設備其中的原理都是以量子光學為基礎。像[[光电 倍增管]]或[[電子倍增管工程]]等 光偵測器可以對單一,实务应用[[光 子]]反應。像[[感光耦合元 学构 的制作和检测]] 等電子式的[[图像 传感器]],也會因為個別光子的統計特性而出現[[散粒噪声处理]] 若沒 其中部份领域 量子力學 些重迭 也就無法理解[[發光二極體]]及[[太阳能电池]] 而各概念的差异在不同 原理。量子光學常和量子電子學重疊特別領域 地区或是不同 光學研究 产业 包括光和特定材料之間的關係(如及会略有不同。因为[[ 超材料雷射]] ),其他的研究包括電磁波 技术 現象 进展 以及[[光学涡旋]]、、[[ 在数十年前就开始了一个 非线性光学]]、統計光學、[[光度学]]及[[辐射度量学]]等。此外,電腦工程師對[[積體光學]]、[[機器視覺]]及[[光學電腦|光學計算]]等有興趣,這些可能是下一代電腦中 重要組件专业研究社群
現在, == 學中純物理的部份會稱為[[光物理學]],和光學中應用科學或工程 部份分開,後者則稱為[[光電工程]]。光電工程的主要領域包括有[[照明]]工程、[[光子学]]及[[光電工程]]等,實務應 [[光学构件的制作和检测]]及[[影像處理]]等。其中部份領域有些重疊,而各概念的差異在不同的地區或是不同的產業也會略有不同。因為[[雷射]]技術的進展,在數十年前就開始了一個非線性光學的專業研究社群==
== 光學的應用 ==每天生活中有 多都和光 。生物的[[视觉系统]]就是以光 原理 作,是[[五感]]之一。[[眼 ]]或[[ 形眼 ]] 助人 改善 力,而光 也是 多消 品(例如[[相 ]])的重要 能,[[望 遠鏡远镜]]、[[ ]]及[[放大 ]]都是典型的[[光 學儀 学仪 器]]。[[彩虹]]及[[海市蜃楼]]都是[[光 學現 学现 象]],而[[光通 ]]是 在[[ 網際網路因特网]]及的基
===人眼===
人眼的功能是 线 聚焦在 稱為称为[[视网膜]],位在眼球 方的[[感光细胞]]。聚焦是由一系列的透光物 質來達 质来达 成。 入眼球的光 先通 [[角膜]],之 角膜 的液 態區 态区 域接 著進 着进 入[[瞳孔]]。光之 可以 調節 调节 及聚焦光 线 的[[晶状体]],接 著會經過 着会经过 人眼中的主要液 態區 态区 域[[玻璃体]],最 後進 后进 入[[视网膜]]。视网膜的 胞在眼球 內側 内侧 面,只有一 是[[视神经]] 離開 离开 眼球的路 這個點 这个点 也是眼睛的[[盲 (眼)|盲 点]]。 眼睛中有两种感光细胞,分别是[[视杆细胞]]及[[视锥细胞]],会以不同的方式感测光线[[视杆细胞]]对广泛频率范围内的光强度变化很敏感,负责,视杆细胞分布在的区域,对于光在空间中的变化或是随时间的变化不如视锥细胞那么敏感。不过视杆细胞在视网膜中分布的区域较广,且数量是视锥细胞的二十倍,因为其分布位置的广泛,视杆细胞负责[[视锥细胞]]对光的整体强度变化较不敏感,但视锥细胞分为三种,对三个不同频率范围的光很敏感,因此用来认知[[颜色]]及。视锥细胞集中在正中凹,其空间的分辨率较视杆细胞要好。因为视锥细胞在光线暗时不像视杆细胞那么灵敏,夜间视觉会因为而受限。因为视锥细胞集中在正中凹,大部份的中央视觉(例如阅读、做精细动作或检查物品需要的视觉)都是由视锥细胞进行。 ===大气光学=== 大气独特的光学特性造成很多壮观的光学现象,像天空的蓝色就是[[瑞利散射]]的结果<ref>[https://blog.csdn.net/vincent1456/article/details/60882832 用瑞利散射解释天空的颜色],CSDN,2017-03-08</ref>,将较高频率的颜色(蓝色)反射到观察者眼前。因为蓝光比红光容易被散射,当透过较厚的太气来直接观测太阳(如[[日出]]或[[日落]] )时,太阳会呈现红色。天空中其他颗粒物也可以在不同角度散射不同颜色的光,因此在黄昏和黎明时会有多彩发光的天空 大气中[[冰晶]]或其他物质的散射造成了[[晕]]、[[晚霞余晖]]、[[华 (光象)|华]]、[[云隙光]]及[[幻日]]等大气现象。这些现象的不同是因为空气中粒子的大小及其几何形状
眼睛中有兩種感光細胞,分別是[[ 視杆細胞海市蜃楼]] 及[[視錐細胞]],會以 是光因为 不同 的方式感測光線温度下空气[[ 視杆細胞折射率]] 對廣泛頻率範圍內 光強度變 很敏感,負責,視杆細胞分布在 而产生 區域,對於 学现象。光线 传播于不同温度下的 間中 气时被偏折而在遥远 變化 距离 是隨時間的變化不如視錐細胞那麼敏感。不過視杆細胞在視網膜 天空 分布的區域較廣 生成虚像 且數量是視錐細胞 因此物体会出现于原先不可能出现 二十倍,因為其分布 位置 。其他相关 廣泛,視杆細胞負責光学效应包括[[ 視錐細胞新地岛效应]] 對光的整體強度變化較不敏感 但視錐細胞分為三種,對三個不同頻率範圍 也就是太阳上升 光很敏感 比预期时间要快 因此用來認知而且形状扭曲。[[复杂蜃景]]是和[[ 顏色逆温]] 下的折射有关的光学现象,是像岛屿、悬崖、船舶 。視錐細胞集中 冰山等物体在地平 正中凹 线 ,其 空間的解析度較視杆細胞要好。因為視錐細胞在光線暗時不 外形伸长且拉高,看起来 視杆細胞那麼靈敏,夜間視覺會因為而受限。因為視錐細胞集中在正中凹,大部份 「童话故事里 中央视觉(例如閱讀、做精細動作或檢查物品需要的視覺)都是由視錐細胞進行城堡」
===大氣 [[彩虹]]是 學===在雨滴中的内反射及色散折射所造成。若在雨滴中只有单一反射,会在天空仰角约40°至42°度形成彩虹,红色在最外层,若是在雨滴中有二次反射,会在天空仰角约50.5°至54°形成彩虹,紫色在最外层。因为太阳和彩虹的中心会相差180度,若太阳越靠近地平线,彩虹会更明显。
==视频=====<center> 大氣獨特的 學特性造成很多壯觀的 学 相关视频</center>===<center> 學現象,像天空的藍色就是[[瑞利散射]]的結果,將較高頻率的顏色(藍色)反射到觀察者眼前。因為藍 学基础知识 </center><center>{{#iDisplay:w0921w5hmn6|560|390|qq}}</center><center>几何 比紅 学 1 几何 容易被散射,當透過較厚 太氣來直接觀測太陽(如[[日出]]或[[日落]])時,太陽會呈現紅色。天空中其他顆粒物也可以在不同角度散射不同顏色的光,因此在黃昏和黎明時會有多彩發光的天空。大氣中[[冰晶]]或其他物質的散射造成了[[暈]]、[[晚霞餘暉]]、[[華 (光象)基本原理 </center><center>{{#iDisplay:a0620a9t3a4|560|390| 華]]、[[雲隙光]]及[[幻日]]等大氣現象。這些現象的不同是因為空氣中粒子的大小及其幾何形狀qq}}</center>
[[海市蜃楼]]是光因為不同溫度下空氣[[折射率]]的變化而產生的光學現象。光線在傳播於不同溫度下的空氣時被偏折而在遙遠的距離或天空中生成虛像,因此物體會出現於原先不可能出現的位置。其他相關的光學效應包括[[新地島效應]],也就是太陽上昇的比預期時間要快,而且形狀扭曲。[[複雜蜃景]]是和[[逆溫]]下的折射有關的光學現象,是像島嶼、懸崖、船舶及冰山等物體在地平線上,其外形伸長且拉高,看起來像「童話故事裡的城堡」==参考文献==
[[ 彩虹Category:336 光;光学]] 是光在雨滴中的內反射及色散折射所造成。若在雨滴中只有單一反射,會在天空仰角約40°至42°度形成彩虹,紅色在最外層,若是在雨滴中有二次反射,會在天空仰角約50.5°至54°形成彩虹,紫色在最外層。因為太陽和彩虹的中心會相差180度,若太陽越靠近地平線,彩虹會更明顯
4,620
次編輯