打开主菜单

求真百科

动力学原理

动力学(Dynamics)是理论力学的一个分支学科,它主要研究作用于物体的力与物体运动的关系。动力学的研究对象是运动速度远小于光速的宏观物体。动力学是物理学和天文学的基础,也是许多工程学科的基础。许多数学上的进展也常与解决动力学问题有关,所以数学家对动力学有着浓厚的兴趣。[1]

[]

目录

概述

动力学是理论力学的分支学科,研究作用于物体的力与物体运动的关系。动力学的研究对象是运动速度远小于光速的宏观物体。原子和亚原子粒子的动力学研究属于量子力学,可以比拟光速的高速运动的研究则属于相对论力学。动力学是物理学和天文学的基础,也是许多工程学科的基础。许多数学上的进展常与解决动力学问题有关,所以数学家对动力学有浓厚的兴趣。 动力学的研究以牛顿运动定律为基础;牛顿运动定律的建立则以实验为依据。动力学是牛顿力学或经典力学的一部分,但自20世纪以来,动力学又常被人们理解为侧重于工程技术应用方面的一个力学分支。 动力学的基本内容包括质点动力学、质点系动力学、刚体动力学,达朗伯原理等。以动力学为基础而发展出来的应用学科有天体力学、振动理论、运动稳定性理论、陀螺力学、外弹道学、变质量力学以及正在发展中的多刚体系统动力学等(见振动,运动稳定性,变质量体运动,多刚体系统)。 质点动力学有两类基本问题:一是已知貭点的运动,求作用于质点上的力,二是已知作用于质点上的力,求质点的运动,求解第一类问题时只要对质点的运动方程取二阶导数,得到质点的加速度,代入牛顿第二定律,即可求得力;求解第二类问题时需要求解质点运动微分方程或求积分。所谓质点运动微分方程就是把运动第二定律写为包含质点的坐标对时间的导数的方程。 动力学普遍定理是质点系动力学的基本定理,它包括动量定理、动量矩定理、动能定理以及由这三个基本定理推导出来的其他一些定理。动量、动量矩和动能(见能)是描述质点、质点系和刚体运动的基本物理量。作用于力学模型上的力或力矩与这些物理量之间的关系构成了动力学普遍定理。二体问题和三体问题是质点系动力学中的经典问题。 刚体区别于其他质点系的特点是其质点之间距离的不变性。推述刚体姿态的经典方法是用三个独立的欧拉角。欧拉动力学方程是刚体动力学的基本方程,刚体定点转动动力学则是动力学中的经典理论。陀螺力学的形成说明刚体动力学在工程技术中的应用具有重要意义。多刚体系统动力学是20世纪60年代以来由于新技术发展而形成的新分支,其研究方法与经典理论的研究方法已有所不同。

内容

动力学的基本内容包括质点动力学、质点系动力学、刚体动力学、达朗贝尔原理等。以动力学为基础而发展出来的应用学科有天体力学、振动理论、运动稳定性理论,陀螺力学、外弹道学、变质量力学,以及正在发展中的多刚体系统动力学、晶体动力学等

应用

对动力学的研究使人们掌握了物体的运动规律,并能够为人类进行更好的服务。例如,牛顿发现了万有引力定律,解释了开普勒定律,为近代星际航行,发射飞行器考察月球、火星、金星等等开辟了道路。 自20世纪初相对论问世以后,牛顿力学的时空概念和其他一些力学量的基本概念有了重大改变。实验结果也说明:当物体速度接近于光速时,经典动力学就完全不适用了。但是,在工程等实际问题中,所接触到的宏观物体的运动速度都远小于光速,用牛顿力学进行研究不但足够精确,而且远比相对论计算简单。因此,经典动力学仍是解决实际工程问题的基础。 在目前所研究的力学系统中,需要考虑的因素逐渐增多,例如,变质量、非整、非线性、非保守还加上反馈控制、随机因素等,使运动微分方程越来越复杂,可正确求解的问题越来越少,许多动力学问题都需要用数值计算法近似地求解,微型、高速、大容量的电子计算机的应用,解决了计算复杂的困难。 目前动力学系统的研究领域还在不断扩大,例如增加热和电等成为系统动力学;增加生命系统的活动成为生物动力学等,这都使得动力学在深度和广度两个方面有了进一步的发展。

參考來源