開啟主選單

求真百科

變更

CUDAC编程权威指南

增加 6,390 位元組, 1 個月前
创建页面,内容为“《'''CUDAC编程权威指南'''》,作 者程润伟,出版社机械工业出版社,ISBN9787111565475。 机械工业出版社成立于1950年,是建…”
《'''CUDAC编程权威指南'''》,作 者程润伟,出版社机械工业出版社,ISBN9787111565475。

机械工业出版社成立于1950年,是建国后国家设立的第一家科技[[出版社]],前身为科学技术出版社,1952年更名为机械工业出版社<ref>[https://www.maigoo.com/maigoo/6296cbs_index.html 中国十大出版社-出版社品牌排行榜],买购网</ref>。机械工业出版社(以下简称机工社)由[[机械工业信息研究院]]作为主办单位,目前隶属于国务院国资委<ref>[http://www.cmpbook.com/about 企业简介],机械工业出版社</ref>。

==内容简介==

本书主要介绍了如何使用GPU和利用CUDAC语言对其进行编程的。首先从基本的CUDA概念及结构讲起,一步一步地引导读者进入CUDA的内部世界,由浅入深地介绍了其编程要求及其内部架构,使读者对其有了整体印象后,逐步深入了解其内部机能,后介绍了GPU的一些专用函数和注意事项。

==目录==

译者序

推荐序

自序

作者简介

[[技术]]审校者简介

前言

致谢

第1章 基于CUDA的异构并行计算1

1.1 并行计算1

1.1.1 串行编程和并行编程2

1.1.2 并行性3

1.1.3 [[计算机]]架构4

1.2 异构计算6

1.2.1 异构架构7

1.2.2 异构计算范例9

1.2.3 CUDA:一种异构计算平台10

1.3 用GPU输出Hello World12

1.4 使用CUDA C编程难吗15

1.5 总结16

1.6 习题16

第2章 CUDA编程模型18

2.1 CUDA编程模型概述18

2.1.1 CUDA编程结构19

2.1.2 内存管理20

2.1.3 线程管理24

2.1.4 启动一个CUDA核函数29

2.1.5 编写核函数30

2.1.6 验证核函数31

2.1.7 处理错误32

2.1.8 编译和执行32

2.2 给核函数计时35

2.2.1 用CPU计时器计时35

2.2.2 用nvprof工具计时39

2.3 组织并行线程40

2.3.1 使用块和线程建立矩阵索引40

2.3.2 使用二维网格和二维块对矩阵求和44

2.3.3 使用一维网格和一维块对矩阵求和47

2.3.4 使用二维网格和一维块对矩阵求和48

2.4 设备管理50

2.4.1 使用运行时API查询GPU信息50

2.4.2 确定GPU53

2.4.3 使用nvidia-smi查询GPU信息53

2.4.4 在运行时设置设备54

2.5 总结54

2.6 习题55

第3章 CUDA执行模型56

3.1 CUDA执行模型概述56

3.1.1 GPU架构概述57

3.1.2 Fermi架构59

3.1.3 Kepler架构61

3.1.4 配置文件驱动优化65

3.2 理解线程束执行的本质67

3.2.1 线程束和线程块67

3.2.2 线程束分化69

3.2.3 资源分配74

3.2.4 延迟隐藏76

3.2.5 占用率78

3.2.6 同步81

3.2.7 可扩展性82

3.3 并行性的表现83

3.3.1 用nvprof检测活跃的线程束84

3.3.2 用nvprof检测内存操作85

3.3.3 增大并行性86

3.4 避免分支分化88

3.4.1 并行归约问题88

3.4.2 并行归约中的分化89

3.4.3 改善并行归约的分化93

3.4.4 交错配对的归约95

3.5 展开循环97

3.5.1 展开的归约97

3.5.2 展开线程的归约99

3.5.3 完全展开的归约101

3.5.4 模板函数的归约102

3.6 动态并行104

3.6.1 嵌套执行105

3.6.2 在GPU上嵌套Hello World106

3.6.3 嵌套归约109

3.7 总结113

3.8 习题113

第4章 全局内存115

4.1 CUDA内存模型概述115

4.1.1 内存层次结构的优点116

4.1.2 CUDA内存模型117

4.2 内存管理124

4.2.1 内存分配和释放124

4.2.2 内存传输125

4.2.3 固定内存127

4.2.4 零拷贝内存128

4.2.5 统一虚拟寻址133

4.2.6 统一内存寻址134

4.3 内存访问模式135

4.3.1 对齐与合并访问135

4.3.2 全局内存读取137

4.3.3 全局内存写入145

4.3.4 结构体数组与数组结构体147

4.3.5 性能调整151

4.4 核函数可达到的带宽154

4.4.1 内存带宽154

4.4.2 矩阵转置问题155

4.5 使用统一内存的矩阵加法167

4.6 总结171

4.7 习题172

第5章 共享内存和常量内存174

5.1 CUDA共享内存概述174

5.1.1 共享内存175

5.1.2 共享内存分配176

5.1.3 共享内存存储体和访问模式176

5.1.4 配置共享内存量181

5.1.5 同步183

5.2 共享内存的数据布局185

5.2.1 方形共享内存185

5.2.2 矩形共享内存193

5.3 减少全局内存访问199

5.3.1 使用共享内存的并行归约199

5.3.2 使用展开的并行归约202

5.3.3 使用动态共享内存的并行归约204

5.3.4 有效带宽205

5.4 合并的全局内存访问205

5.4.1 基准转置内核205

5.4.2 使用共享内存的矩阵转置207

5.4.3 使用填充共享内存的矩阵转置210

5.4.4 使用展开的矩阵转置211

5.4.5 增大并行性214

5.5 常量内存215

5.5.1 使用常量内存实现一维模板215

5.5.2 与只读缓存的比较217

5.6 线程束洗牌指令219

5.6.1 线程束洗牌指令的不同形式220

5.6.2 线程束内的共享数据222

5.6.3 使用线程束洗牌指令的并行归约226

5.7 总结227

5.8 习题228

第6章 流和并发230

6.1 流和事件概述231

6.1.1 CUDA流231

6.1.2 流调度234

6.1.3 流的优先级235

6.1.4 CUDA事件235

6.1.5 流同步237

6.2 并发内核执行240

6.2.1 非空流中的并发内核240

6.2.2 Fermi GPU上的虚假依赖关系242

6.2.3 使用OpenMP的调度操作244

6.2.4 用环境变量调整流行为245

6.2.5 GPU资源的并发限制246

6.2.6 默认流的阻塞行为247

6.2.7 创建流间依赖关系248

6.3 重叠内核执行和数据传输249

6.3.1 使用深度优先调度重叠249

6.3.2 使用广度优先调度重叠252

6.4 重叠GPU和CPU执行254

6.5 流回调255

6.6 总结256

6.7 习题257

第7章 调整指令级原语258

7.1 CUDA指令概述259

7.1.1 浮点指令259

7.1.2 内部函数和标准函数261

7.1.3 原子操作指令262

7.2 程序优化指令264

7.2.1 单精度与双精度的比较264

7.2.2 标准函数与内部函数的比较266

7.2.3 了解原子指令272

7.2.4 综合范例277

7.3 总结279

7.4 习题280

第8章 GPU加速库和OpenACC281

8.1 CUDA库概述282

8.1.1 CUDA库支持的作用域283

8.1.2 通用的CUDA库工作流283

8.2 cuSPARSE库285

8.2.1 cuSPARSE数据存储格

==参考文献==
[[Category:040 類書總論;百科全書總論]]
269,841
次編輯