開啟主選單

求真百科

變更

不可达基数

增加 4,845 位元組, 10 個月前
创建页面,内容为“ '''不可达基数'''是全国科学技术名词审定委员会审定、公布的科技类名词术语。 中国,从来就是一个文化底蕴极度丰…”


'''不可达基数'''是全国科学技术名词审定委员会审定、公布的科技类名词术语。

中国,从来就是一个[[文化]]底蕴极度丰富的国家,中国的文字,更是凝聚着中国的文化精魂<ref>[https://www.sohu.com/a/608048275_121124707 中国汉字魅力无穷],搜狐,2022-11-20</ref>。中国最早出现的和[[文字]]相关的文化记忆就是仓颉造字,小小的文字中蕴藏了无限的文化<ref>[https://www.sohu.com/a/360288638_693023 诗酒趁年华 | 品中国文字 悟千年精魂],搜狐,2019-12-13</ref>,然后就出现了最初的[[甲骨文]]。

==名词解释==

不可达基数(inaccessible cardinals)是强弱不可达基数的统称。如果K是不可数的、正则的极限基数,则称是弱不可达基数。如果是不可数的、正则的强极限基数,则称K是强不可达基数。这两类大基数合称不可达基数(或不可到达基数)。

不可达基数是强弱不可达基数的统称。如果κ是不可数的、正则的极限基数,则称κ是弱不可达基数;如果κ是不可数的、正则的强极限基数,则称κ是强不可达基数。这两类大基数合称不可达基数(或不可到达基数),也有文献只把强不可达基数称为不可达基数。不可达基数的概念是[[波兰]][[数学]]家谢尔品斯基(Sierpiski,W.)和波兰学者塔尔斯基(Tarski,A.)于1930年引入的。由于任何基数λ的后继基数λ+不超过λ的幂2λ,所以每个强不可达基数必为弱不可达基数;又由于在广义连续统假设GCH之下,λ+=2λ,所以在GCH之下,每个弱不达基数也是强不可达基数。之所以如此称呼这类大基数,是因为不能用通常的集合论运算来“到达”它们。事实上,若κ是强不可达基数,又集合X的基数|X|<κ,则幂集P(X)的基数也小于κ;又若|S|<κ,且对每个X∈S,|X|<κ,则|∪S|<κ。这就是说,由小于κ的基数,无论进行何种运算,总达不到κ。可数无穷基数N0也具有上述两条性质,因此,也可以说在有限基数的范围内,用除去无穷公理之外的任何集论运算,N0也是“不可到达”的。这就清楚地看出,不可达基数确实是无穷基数0的一种自然推广。“存在不可达基数”已不是ZFC系统的定理。若想肯定这一事实,只有引入大基数公理。事实上,若κ是强不可达基数,则直到κ层的集Vκ就是ZFC系统的模型。这样,若存在强不可达基数,则ZFC系统便相容。但不可能在ZFC系统中证明ZFC系统的相容性,于是推知:“存在不可达基数”不是ZFC系统的定理。

弱不可达基数

弱不可达基数是一种正则基数。既是极限基数又是正则基数的不可数基数。若Nα为弱不可达基数,则cf(α)=α,且α是极限序数。因为cf(Nα)≤Nα,Nα≥α,所以Nα=α。可见Nα是非常大的。由定义还可看出,不可达基数κ不可能由比它小的基数通过基数的加法、乘法、乘幂和取极限等运算得到。豪斯多夫(Hausdorff,F.)在1908年提出了弱不可达基数的概念。现已知道弱不可达基数的存在性在ZFC系统中是不可证的。

强不可达基数

强不可达基数是一种正则基数。简称不可达基数。既是正则的又是强极限的无穷基数。即如果正则基数κ满足κ>N0,且对任何λ<κ有2λ<κ,κ就是一个强不可达基数。强不可达基数一定是弱不可达的。在广义连续统假设成立时,每个弱不可达基数也是强不可达的。这时这两个概念是相同的。在ZFC系统中不能证明不可达基数的存在性。称这种基数为不可达的原因是它不可能从比它小的基数出发,使用通常的集合论运算得到。

正则基数

正则基数是一种特殊基数。如果α为极限序数,且cf(α)=α,则称α为正则的。正则的基数称为正则基数。不正则的无穷基数称为奇异基数。由于正则的序数一定是基数,故人们对正则的序数、正则序数、正则的基数和正则基数这几个概念不加区别地使用。通常也有人将ω称为正则基数,将Nα+1称为正则序数。正则性是基数的重要概念之一,它由德国数学家豪斯多夫(Hausdorff,F.)于1908年引入。关于正则基数的性质曾引申出许多重要的集合论命题,其中最重要的问题是:是否能在ZF系统中证明存在大于ω的正则基数?一方面,由选择公理知,N1,N2,…,Nα+1都是大于ω的正则基数。另一方面,以色列集合论学家吉帖克(Gitik,M.)于1979年在假定存在某种大基数真类的情况下,证明了不存在大于ω的正则基数,也是和ZF系统相容的。

==参考文献==
[[Category:800 語言學總論]]
269,445
次編輯