開啟主選單

求真百科

變更

泛函积分

增加 67 位元組, 3 年前
那么,μ 是W0上关于φ 的拓扑连续的柱测度。从而W0是否成为样本空间的问题等价于柱测度μ 在W0∩φ上具有可列可加性。1959年,P.A.明洛斯证明了下面的基本定理:设φ是核空间,则φ的共轭空间(连续线性泛函全体)φ┡上的任何一个关于φ 的拓扑连续的柱测度都是可列可加的。所以φ 上的每一个广义随机过程都以φ┡为样本空间。1962年,夏道行证明,设B是具有基底{en,n≥1}的巴拿赫空间,φ是由{en,n≥1}张成的线性子空间,{en}是一列随机变量,并依概率1成立 令依概率收敛},则W上关于B的拓扑连续的柱测度是可列可加的。这个结果的重要性不但在于它是明洛斯定理的推广而且在于它指出了柱测度可列可加性与巴拿赫空间结构的本质联系正定函数的表示问题和柱测度的可列可加性的关系极为密切。设φ 是拓扑线性空间,φ 按向量的加法成为交换的拓扑群。若ƒ是φ上的正定函数,W是φA上的线性子空间,且φ∈φ,φ=0等价于ƒ(φ)=0,对任何ƒ∈W;那么在W上有惟一的柱测度Λ,使 (g∈φ)。ƒ是 φ上的连续的正定函数的充要条件是柱测度Λ关于φ 的拓扑是连续的。因此,经典调和分析中的有限维空间上的博赫纳定理在无限维空间上的推广问题与研究柱测度的可列可加性是等价的。当 G是一般的交换的拓扑群时,可用G的特征标群G代替φ进行类似的讨论。根据关于柱测度可列可加性的明洛斯定理知道,核空间φ上的连续正定函数必是φ ┡上的概率测度的傅里叶变换。夏道行利用拟不变测度的理论对交换拓扑群上的正定函数的表示得到了很一般的结果,即对一类交换的拓扑群推广了博赫纳定理。<ref>[https://zhuanlan.zhihu.com/p/171756902 泛函积分]搜狗</ref>
=='''参考文献'''==
 
[[Category:850 各地方文學;各民族文學;各體文學]]
41,228
次編輯