開啟主選單

求真百科

變更

王梓坤

增加 38 位元組, 4 年前
80年代
==80年代==
王梓坤和他的小组研究布朗运动与位势理论和多参数马氏过程。1980年他与R.K.Getoor几乎同时独立地解决了布朗运动的首出时与末离时的联合分布问题。1984年他利用多重随机积分给出了多指标Ornstein-Uhlenbeck过程的定义,并取得了一系列的成果。国外J.B.Walsh于1986年也提出了基本上一致的定义。后来王梓坤又将两种定义作了统一的处理。1980年,王梓坤的研究专著《生灭过程与马尔可夫链》作为“纯粹数学与应用数学专著”丛书的第5号由科学出版社出版。该书对他在生灭过程方面的研究成果进行了较为系统地概括和总结。此后王梓坤与 [[ 杨向群 ]] 合作对该书进行了扩充,1992年由 [[ 国Springer国]]Springer-Verlag出版社出版了英文版。 [[ 美国 ]] 《数学评论》介绍说:“本书后三章的许多结果来源于作者个人的研究,这是一部雅致而明晰的著作(an elegant and lucid book)”,又对英文版评论道:“这本专著带给英文读者中国概率论学派70年代所获得的许多结果”。实际上,该书的大部分结果是在50年代末至60年代取得的!1983年,科学出版社出版了王梓坤著的《布朗运动与位势》。 1984年,王梓坤调入 [[ 北京师范大学 ]] 后与 [[ 李占柄 ]] 共同主持马氏过程讨论班,继续在马氏过程与位势理论、多参数马氏过程等方面的研究工作。李占柄1961年7月毕业于前 [[ 苏联 ]][[ 莫斯科大学 ]][[ 数学 ]] 力学系概率论与数理统计专业。1961年8月开始任教于北京师范大学数学系。他曾于1980年10月至1982年1月访问美国麻省州立大学,1991年11月至1992年6月访问乌克兰基辅大学。李占柄长期从事随机过程,非线性方程和数学物理方面的研究。八十年代,他在对一类满足某种非线性Fokker-Planck方程的马氏过程的研究中所采用的扩散逼近方法受到M.Crandall和R.Gardner的好评,在高维Burger方程的研究中曾解决了著名学者Ya.G.Sinai提出的一个问题,在非平衡系统的Master方程的建立及稳定性、基本粒子的方程机制、辐射源交叉定位的精度分析几方面也有多项研究成果。1990年,王梓坤和李占柄培养的博士陈雄毕业留数学系任教,充实了马氏过程方向的研究力量。陈雄的研究工作主要集中在多参数马氏过程方向,在多参数OU过程和多参数Poisson型随机微分方程的研究中取得了很好的研究成果。陈雄1993年出国工作,此后若干年中仍继续有关方向的研究。 1988年,王梓坤由于在概率论、科学教育和研究方法论等方面的成就获 [[ 澳大利亚 ]] 麦克里(Macquarie)大学荣誉科学博士学位。1988年底至1989年初,美国国家科学院院士E.B.Dynkin应邀访华,在南开大学和北京师大做了Dawson-Watanabe超过程方面的系列讲座。此后,王梓坤和李占柄带领他们的研究组开始该方向的研究。DW超过程是大规模微观粒子群体随机演化的数学模型,在生物、物理等学科中有很强的应用背景。1989年,李占柄在一篇短文中阐述了Dynkin关于DW超过程分枝机制积分表示的猜想。1990年,王梓坤给出了DW超过程Laplace泛函的幂级数展开。同年李增沪证明了分枝机制的积分表示,这个表示是超过程定义中几个基本的公式之一。Dynkin [Ann. Probab. 1993]利用他的结果解释DW超过程模型的普适性:如果超过程是由某个分枝粒子系统取极限得到的,则其分枝机制一定具有特定的积分表示形式。
==90年代==
99,334
次編輯