打开主菜单

求真百科

PN结采用不同的掺杂工艺,通过扩散作用,将P型半导体与N型半导体制作在同一块半导体(通常是硅或锗)基片上,在它们的交界面就形成空间电荷区称为PN结(英语:PN junction)。PN结具有单向导电性,是电子技术中许多器件所利用的特性,例如半导体二极管、双极性晶体管的物质基础。

PN 结

目录

发展过程

1935年后贝尔实验室的一批科学家转向研究Si材料,1940年,用真空熔炼方法拉制出多晶Si棒并且掌握了掺入Ⅲ、Ⅴ族杂质元素来制造P型和N型多晶Si的技术。还用生长过程中掺杂的方法制造出第一个Si的PN结,发现了Si中杂质元素的分凝现象,以及施主和受主杂质的补偿作用。

1948年,威廉·肖克利的论文《半导体中的P-N结和P-N结型晶体管的理论》发表于贝尔实验室内部刊物。

形成原理

杂质半导体

N型半导体(N为Negative的字头,由于电子带负电荷而得此名):掺入少量杂质元素(或锑元素)的硅晶体(或锗晶体)中,由于半导体原子(如硅原子)被杂质原子取代,磷原子外层的五个外层电子的其中四个与周围的半导体原子形成共价键,多出的一个电子几乎不受束缚,较为容易地成为自由电子。于是,N型半导体就成为了含电子浓度较高的半导体,其导电性主要是因为自由电子导电。

P型半导体(P为Positive的字头,由于空穴带正电而得此名):掺入少量杂质元素(或铟元素)的硅晶体(或锗晶体)中,由于半导体原子(如硅原子)被杂质原子取代,硼原子外层的三个外层电子与周围的半导体原子形成共价键的时候,会产生一个“空穴”,这个空穴可能吸引束缚电子来“填充”,使得硼原子成为带负电的离子。这样,这类半导体由于含有较高浓度的“空穴”(“相当于”正电荷),成为能够导电的物质。

PN结的形成

PN结的形成其实就是在一块完整的硅片上,用不同的掺杂工艺使其一边形成N型半导体,另一边形成P型半导体,那么在两种半导体的交界面附近就形成了PN结。

在形成PN结之后,由于N型半导体区内的电子数量多于空穴数量,而P型半导体区内的空穴数量多于电子数量,所以在它们的交界处就出现了电子和空穴的浓度差。这样,电子和空穴都要从浓度高的地方向浓度低的地方扩散。

最后,多子的扩散和少子的漂移达到动态平衡。在P型半导体和N型半导体的结合面两侧,留下离子薄层,这个离子薄层形成的空间电荷区称为PN结。PN结的内电场方向由N区指向P区。在空间电荷区,由于缺少多子,所以也称耗尽层。[1]

主要特性

单向导电性

1、PN结加正向电压时导通

如果电源的正极接P区,负极接N区,外加的正向电压有一部分降落在PN结区,PN结处于正向偏置。电流便从P型一边流向N型一边,空穴和电子都向界面运动,使空间电荷区变窄,电流可以顺利通过,方向与PN结内电场方向相反,削弱了内电场。于是,内电场对多子扩散运动的阻碍减弱,扩散电流加大。扩散电流远大于漂移电流,可忽略漂移电流的影响,PN结呈现低阻性。

2、PN结加反向电压时截止

如果电源的正极接N区,负极接P区,外加的反向电压有一部分降落在PN结区,PN结处于反向偏置。则空穴和电子都向远离界面的方向运动,使空间电荷区变宽,电流不能流过,方向与PN结内电场方向相同,加强了内电场。内电场对多子扩散运动的阻碍增强,扩散电流大大减小。此时PN结区的少子在内电场作用下形成的漂移电流大于扩散电流,可忽略扩散电流,PN结呈现高阻性。

在一定的温度条件下,由本征激发决定的少子浓度是一定的,故少子形成的漂移电流是恒定的,基本上与所加反向电压的大小无关,这个电流也称为反向饱和电流。

PN结加正向电压时,呈现低电阻,具有较大的正向扩散电流;PN结加反向电压时,呈现高电阻,具有很小的反向漂移电流。由此可以得出结论:PN结具有单向导电性。[2]

伏安特性

PN结接入电路后电流电压之间的关系,也就是PN结的伏安特性。PN结的伏安特性(外特性)直观形象地表示了PN结的单向导电性。

因为扩散运动会使pn结产生一个内电场,而外加的电压需要克服这个内电场才能导通电流。这个电压称为死区电压。如果是硅材料,数值大概是0.5V左右,如果是锗材料,数值大概是0.1V左右。当外加的正向电压在这个数值之上以后,我们知道内电场的形成就是因为PN结两端有正负电荷的积累。而一旦客服了内电场这些电子就能参与到电路中,电流的大小就会随电压增大呈现指数增长。

反向偏置因为外电场的方向与内电场一致,所以没有死区电压这东西。所以电流大小随电压的增大而增大。但是电流增大的一定数值就不再增大了。因为P区的自由电子数量有限。再大也就那么点。然后我们看图,当反向电压的大小大到一定程度时,电流会突然暴增。这个现象称为反向击穿。这个电压称为击穿电压。击穿电压数值因材料在几十V到几千V不等。[3]

作用介绍

根据PN结的材料、掺杂分布、 几何结构和偏置条件的不同,利用其基本特性可以制造多种功能的晶体二极管

如利用PN结单向导电性可以制作整流二极管、检波二极管和开关二极管。

利用击穿特性制作稳压二极管和雪崩二极管。

利用高掺杂PN结隧道效应制作隧道二极管。

利用结电容随外电压变化效应制作变容二极管。

使半导体的光电效应与PN结相结合还可以制作多种光电器件。

如利用前向偏置异质结的载流子注入与复合可以制造半导体激光二极管与半导体发光二极管。

利用光辐射对PN结反向电流的调制作用可以制成光电探测器。

利用光生伏特效应可制成太阳电池。

此外,利用两个PN结之间的相互作用可以产生放大、振荡等多种电子功能。PN结是构成双极型晶体管和场效应晶体管的核心,是现代电子技术的基础。

制造工艺

PN结是构成各种半导体器件的基础。制造PN结的方法有:合金法、扩散法、离子注入法、外延生长法,制造异质结通常采用外延生长法。

击穿特性应用

当反向电压增大到一定值时,PN结的反向电流将随反向电压的增加而急剧增 加,这种现象称为PN结的击穿,反向电流急剧增加时所对应的电压称为反向击穿电压, PN结的反向击穿有雪崩击穿和齐纳击穿两种。[4]

1、雪崩击穿

阻挡层中的载流子漂移速度随内部电场的增强而相应加快到一定程度时,其动能足以把束缚在共价键中的价电子碰撞出来,产生自由电子—空穴对,新产生的载流子在强电场作用下,再去碰撞其它中性原子,又产生新的自由电子—空穴对,如此连锁反应,使阻挡层中的载流子数量急剧增加,象雪崩一样。雪崩击穿发生在掺杂浓度较低的PN结中,阻挡层宽,碰撞电离的机会较多,雪崩击穿的击穿电压高。

2、齐纳击穿

当PN结两边掺杂浓度很高时,阻挡层很薄,不易产生碰撞电离,但当加不大的反向电压时,阻挡层中的电场很强,足以把中性原子中的价电子直接从共价键中拉出来,产生新的自由电子—空穴对,这个过程 称为场致激发。一般击穿电压在6V以下是齐纳击穿,在6V以上是雪崩击穿。

3、击穿电压的温度特性

温度升高后,晶格振动加剧,致使载流子运动的平 均自由路程缩短,碰撞前动能减小,必须加大反向电压才能发生雪崩击穿具有正的温度系数,但温度升高,共价键中的价电子能量状态高,从而齐纳击穿电压随温度升高而降低,具有负的温度系数。6V左右两种击穿将会同时发生,击穿电压的温度系数趋于零。

4、稳压二极管

PN结一旦击穿后,尽管反向电流急剧变化,但其端电压几 乎不变(近似为V(BR),只要限制它的反向电流,PN结 就不会烧坏,利用这一特性可制成稳压二极管,其主要参数有: VZ 、 Izmin 、 Iz 、 Izmax。

相关视频

1、PN结的形成

PN结的形成

2、PN结及其单向导电性

PN结及其单向导电性

參考來源

  1. PN结原理,电子产品世界网,2015-06-08
  2. PN结的工作原理及形成原理,电子发烧友网,019-09-04
  3. PN结的伏安特性,博客园网
  4. pn结的基本特性是什么,电子发烧友网,2018-09-06