打开主菜单

求真百科

来自 搜狐网 的图片

KMV模型是个专用术语。

随着社制度的不断发展与进步,中国的汉字也在不断演化着,从最初的甲骨文[1]渐渐发展到了小篆[2],后来文化进一步发展后,才出现了”汉字”这种说法。

目录

名词解释

KMV模型是国旧金山市KMV公司于1997年建立的用来估计借款企业违约概率的方法。该模型认为,贷款的信用风险是在给定负债的情况下由债务人的资产市场价值决定的。但资产并没有真实地在市场交易,资产的市场价值不能直接观测到。为此,模型将银行的贷款问题倒转一个角度,从借款企业所有者的角度考虑贷款归还的问题。在债务到期日,如果公司资产的市场价值高于公司债务值(违约点),则公司股权价值为公司资产市场价值与债务值之间的差额;如果此时公司资产价值低于公司债务值,则公司变卖所有资产用以偿还债务,股权价值变为零。

KMV模型的运用步骤

首先,它利用Black-Scholes期权定价公式,根据企业资产的市场价值、资产价值的波动性、到期时间、无风险借贷利率及负债的账面价值估计出企业股权的市场价值及其波动性。

其次根据公司的负债计算出公司的违约实施点 (default exercise point,为企业1年以下短期债务的价值加上未清偿长期债务账面价值的一半),计算借款人的违约距离。

最后,根据企业的违约距离与预期违约率(EDF) 之间的对应关系,求出企业的预期违约率。

KMV模型的理论基础

KMV模型的优势在于以现代期权理论基础作依托,充分利用资本市场的信息而非历史账面资料进行预测,将市场信息纳入了违约概率,更能反映上市企业当前的信用状况,是对传统方法的一次革命。KMV模型是一种动态模型,采用的主要是股票市场的数据,因此,数据和结果更新很快,具有前瞻性,是一种“向前看”的方法。在给定公司的现时资产结构的情况下,一旦确定出资产价值的随机过程,便可得到任一时间单位的实际违约概率。其劣势在于假设比较苛刻,尤其是资产收益分布实际上存在“肥尾”现象,并不满足正态分布假设;仅抓住了违约预测,忽视了企业信用品质的变化;没有考虑信息不对称情况下的道德风险;必须使用估计技术来获得资产价值、企业资产收益率的期望值和波动性;对非上市公司因使用资料的可获得性差,预测的准确性也较差;不能处理非线性产品,如期权、外币掉期等。

KMV模型的研究阶段

KMV模型自1993年推出以来,国外学术界对KMV模型的研究经历了两个阶段:

第一阶段是将KMV模型的预测结果与实际的违约数据相比较,大多数研究结果表明,KMV模型能够反映信用风险的高低,并对信用风险具有很高的敏感性?

第二阶段,国外学术界对模型的验证寻找到新的角度,并开发出多种验证模型有效性的方法和技术?

我国学者主要对模型在我国适应性和参数调整方面进行了许多探讨,取得了一定的成果?张林?张佳林(2000)?王琼?陈金贤(2002) 先后对KMV模型与其他模型进行理论上比较,认为更适合于评价上市公司的信用风险?薛锋,鲁炜,赵恒街,刘冀云(2003)利用中国股市的数据,得出了应中市场的σv和σE的关系函数,并以一只股票为样本进行了实证分析?乔卓等(2003)介绍了KMV模型的基本内容,以及国外的应用经验,但是并没有进行实证研究?易丹辉,吴建民(2004年)对深市和沪市随机抽取30家公司分行业计算违约距离和违约率并作比较,认为借助违约距离衡量上市公司的信用风险是可行的?

由于缺少大量违约公司样本的历史数据库,因此,我国目前无法通过比较违约距离和破产频率的历史,拟合出代表公司违约距离的预期违约率函数?本文尝试使用上市公司在某国有商业银行贷款不良率替代其违约率,并根据我国资本市场的特点,选取KMV模型的相关参数,同时采用某国有商业银行 2001年12月31日的235家贷款客户的不良率来替代上市公司的违约率进行实证分析,建立违约距离与不良率的函数关系?

KMV模型的评价

KMV是运用现代期权定价理论建立起来的违约预测模型,是对传统信用风险度量方法的一次重要革命。首先,KMV可以充分利用资本市场上的信息,对所有公开上市企业进行信用风险的量化和分析;其次,由于该模型所获取的数据来自股票市场的资料,而非企业的历史数据,因而更能反映企业当前的信用状况,具有前瞻性,其预测能力更强、更及时,也更准确;另外,KMV模型建立在当代公司理财理论和期权理论的基础之上,具有很强的理论基础做依托。

但是,KMV模型与其他已有的模型一样,仍然存在许多缺陷。首先,模型的使用范围由一定的局限性。通常,该模型特别适用于上市公司的信用风险评估,而对非上市公司进行应用时,往往要借助一些会计信息或其他能够反映借款企业特征值的指标来替代模型中一些重要变量,同时还要通过对比分析最终得出该企业的期望违约概率,在一定程度上就有可能降低计算的准确性。其次,该模型假设公司的资产价值服从正态分布,而实际中企业的资产价值一般会呈现非正态的统计特征。再次,模型不能够对债务的不同类型进行区分,如偿还优先顺序、担保、契约等类型,使得模型的输出变量的计算结果不准确。北达公司根据中国过渡经济的资本市场的特点,开发具有中国特色的上市公司信用KMV模型目前在进行压力测试阶段.

参考文献