開啟主選單

求真百科

高斯分布

正態分布(Normal distribution),也稱「常態分布」,又名高斯分布(Gaussian distribution),最早由棣莫弗(Abraham de Moivre)在求二項分布的漸近公式中得到。C.F.高斯在研究測量誤差時從另一個角度導出了它。P.S.拉普拉斯和高斯研究了它的性質。是一個在數學、物理及工程等領域都非常重要的概率分布,在統計學的許多方面有着重大的影響力。正態曲線呈鍾型,兩頭低,中間高,左右對稱因其曲線呈鐘形,因此人們又經常稱之為鐘形曲線。若隨機變量X服從一個數學期望為μ、方差為σ2的正態分布,記為N(μ,σ2)。其概率密度函數為正態分布的期望值μ決定了其位置,其標準差σ決定了分布的幅度。當μ = 0,σ = 1時的正態分布是標準正態分布

目錄

簡介

正態分布概念是由法國數學家棣莫弗(Abraham de Moivre)於1733年首次提出的,後由德國數學家Gauss率先將其應用於天文學研究,故正態分布又叫高斯分布,高斯這項工作對後世的影響極大,他使正態分布同時有了「高斯分布」的名稱,後世之所以多將最小二乘法的發明權歸之於他,也是出於這一工作。 但德國10馬克的印有高斯頭像的鈔票,其上還印有正態分布的密度曲線。這傳達了一種想法:在高斯的一切科學貢獻中,其對人類文明影響最大者,就是這一項。在高斯剛作出這個發現之初,也許人們還只能從其理論的簡化上來評價其優越性,其全部影響還不能充分看出來。這要到20世紀正態小樣本理論充分發展起來以後。拉普拉斯很快得知高斯的工作,並馬上將其與他發現的中心極限定理聯繫起來,為此,他在即將發表的一篇文章(發表於1810年)上加上了一點補充,指出如若誤差可看成許多量的疊加,根據他的中心極限定理,誤差理應有高斯分布。這是歷史上第一次提到所謂「元誤差學說」——誤差是由大量的、由種種原因產生的元誤差疊加而成。後來到1837年,海根(G.Hagen)在一篇論文中正式提出了這個學說。

評價

其實,他提出的形式有相當大的局限性:海根把誤差設想成個數很多的、獨立同分布的「元誤差」 之和,每隻取兩值,其概率都是1/2,由此出發,按棣莫弗的中心極限定理,立即就得出誤差(近似地)服從正態分布。拉普拉斯所指出的這一點有重大的意義,在於他給誤差的正態理論一個更自然合理、更令人信服的解釋。因為,高斯的說法有一點循環論證的氣味:由於算術平均是優良的,推出誤差必須服從正態分布;反過來,由後一結論又推出算術平均及最小二乘估計的優良性,故必須認定這二者之一(算術平均的優良性,誤差的正態性) 為出發點。但算術平均到底並沒有自行成立的理由,以它作為理論中一個預設的出發點,終覺有其不足之處。拉普拉斯的理論把這斷裂的一環連接起來,使之成為一個和諧的整體,實有着極重大的意義。[1]

參考文獻