開啟主選單

求真百科

線性時間

中文名 : 線性時間

在計算複雜性理論,一個被稱為線性時間或 Ο(n)時間的算法,表示此算法解題所需時間正比於輸入資料的大小,通常以n表示。換句話說,執行時間與輸入資料大小為線性比例。例如將一列數字加總的所需時間,正比於串行的長度。[1]

目錄

算法分析

在計算複雜性理論,一個被稱為線性時間或 Ο(n)時間的算法,表示此算法解題所需時間正比於輸入資料的大小,通常以n表示。換句話說,執行時間與輸入資料大小為線性比例。例如將一列數字加總的所需時間,正比於串行的長度。

然而實際情況常有差距,真實的執行時間很可能與預期的比率相差甚大,尤其在n的值很小時。在技術討論時,在足夠大的量n之下算法的執行時間從an到bn(a、b為正實數)時,就可稱線性時間。詳情請看大O符號。

達到線性時間的執行效能通常是一個算法的最佳目標。很多學者研究並創造了許多接近線性或更佳的算法,包括了軟件或硬件方面的研究。硬件方面,藉由諸如平行運算的硬件架構,使得某些數學認為無法在標準計算模型下達到線性時間的算法,現在都可以在線性時間內執行完畢。例如內容可尋址內存(Content-addressable memory)。


補充說明

某些排序算法可以在特殊的數據結構及排列下擁有線性時間的效率。但在一般情況下以比較元素大小來排序的算法,最多只能到達Ο(nlog(n))。最低限度複雜性的證明已被小O符號含括;通用排序算法被認為是Ω(n log(n))。另外,要找到一個集合中最大的元素是 Ω(n),因為算法必須至少比較過(n-1)次才能找到最大元素。

任何必須依賴全部輸入內容才能得解的問題,它最少也得要線性時間才能得解,因為它至少得花線性時間來讀取輸入資料

參考來源