開啟主選單

求真百科

球墨鑄鐵是20世紀五十年代發展起來的一種高強度鑄鐵材料,其綜合性能接近於鋼,正是基於其優異的性能,已成功地用於鑄造一些受力複雜,強度、韌性、耐磨性要求較高的零件。球墨鑄鐵已迅速發展為僅次於灰鑄鐵的、應用十分廣泛的鑄鐵材料。所謂「以鐵代鋼」,主要指球墨鑄鐵。 球墨鑄鐵是通過球化和孕育處理得到球狀石墨,有效地提高了鑄鐵的機械性能,特別是提高了塑性和韌性,從而得到比碳鋼還高的強度。

目錄

主要性能

球鐵鑄件差不多已在所有主要工業部門中得到應用,這些部門要求高的強度、塑性、韌性、耐磨性、耐嚴重的熱和機械衝擊、耐高溫或低溫、耐腐蝕以及尺寸穩定性等。為了滿足使用條件的這些變化、球墨鑄鐵有許多牌號,提供了機械性能和物理性能的一個很寬的範圍。 如國際標準化組織ISO1083所規定的大多數球墨鑄鐵鑄件,主要是以非合金態生產的。顯然,這個範圍包括抗拉強度大於800牛頓/平方毫米,延伸率為2%的高強度牌號。另一個極端是高塑性牌號,其延伸率大於17%,而相應的強度較低(最低為370牛頓/平方毫米)。強度和延伸率並不是設計者選擇材料的根據,而其它決定性的重要性能還包括屈服強度、彈性模數、耐磨性和疲勞強度、硬度和衝擊性能等。另外,耐蝕性和抗氧化以及電磁性能對於設計者也許是關鍵的。為了滿足這些特殊使用,研製了一組奧氏體球鐵,通常叫Ni一Resis球鐵。這些奧氏體球鐵,主要用鎳、鉻和錳合金化,並且列入國際標準。 為珠光體型球墨鑄鐵,具有中高等強度、中等韌性和塑性,綜合性能較高,耐磨性和減振性良好,鑄造工藝性能良好等特點。能通過各種熱處理改變其性能。主要用於各種動力機械曲軸、凸輪軸、連接軸、連杆、齒輪、離合器片、液壓缸體等零部件。[1]

發展歷史

法國的雷奧姆爾(Reaumur)於1722年製成了白心可鍛鑄鐵。後來、美國的塞斯·包伊登(Seth·Boyden)於1826年發明了黑心可鍛鑄鐵。 到了二十世紀二十年代。由於對鑄鐵中碳、硅等主要成分及加入其他合金元素的影響、熔化方法、孕育效果等方面的研究並有了進展,出現了所謂高級鑄鐵。因此,材質有了相當可觀的改善,並在一定程度上擴大了應用範圍。但是,由於存在着韌性低這樣的根本缺點,未能迅速擴大其應用範圍。 1947年,煙的莫羅(Morrogh)發現了鑄態下存在球狀石墨的鑄鐵。 1948年,通過在高碳,低硫、低磷的灰鑄鐵中加入Ce,並使其殘留量保持在0.02%以上,製得了球墨鑄鐵.幾乎與此同時,美國國際鎳公司(INCO)加格奈賓(Gagnebin)等通過在鑄鐵中加Mg,並使其殘留量保持在0.04%以上,獲得了相同的球墨鑄鐵。 在第二次世界大戰期間,由於生產耐磨馬氏體白口鑄鐵所必需的鉻元素資源缺乏,研究Cr的代用元素就成了當務之急。於是,對於與碳發生化學結合的各種金屬及過渡金屬,均就其能否形成碳化物進行了系統的調查研究,其中也就包括鎂。為了減緩在加鎂時的激烈噴濺,曾使用Cu80一Mg20合金和Ni80-M920合金。結果表明,鎂不但作為鉻的代用元素有良好的效果,而且還發現當鎂在鐵水中有某種程度的殘留量時,有顯著的脫硫作用。以這些新的發現為基礎,繼白口鑄鐵之後,對於在灰口鑄鐵中加鎂的作用也進行了研究。在含C 3.5%、Si2.25%和Ni 2%的灰鑄鐵中加入了0.5%的Mg,其抗拉強度遠遠超過原來的預期(普通灰鑄鐵約為13kgf/mm2),高達78kgf/mm2。[2]

組成成分

鑄鐵是含碳量大於2.11%的鐵碳合金,由工業生鐵、廢鋼等鋼鐵及其合金材料經過高溫熔融和鑄造成型而得到,除Fe外,還含及其它鑄鐵中的碳以石墨形態析出,若析出的石墨呈條片狀時的鑄鐵叫灰口鑄鐵或灰鑄鐵、呈蠕蟲狀時的鑄鐵叫蠕墨鑄鐵、呈團絮狀時的鑄鐵叫可鍛鑄鐵或碼鐵、而呈球狀時的鑄鐵就叫球墨鑄鐵。 球墨鑄鐵除鐵外的化學成分通常為:含碳量3.0~4.0%,含硅量1.8~3.2%,含錳、磷、硫總量不超過3.0%和適量的稀土、鎂等球化元素。

參考文獻