概率
基本信息
定義
古典定義
如果一個試驗滿足兩條:
(1)試驗只有有限個基本結果;
(2)試驗的每個基本結果出現的可能性是一樣的。
這樣的試驗便是古典試驗。
對於古典試驗中的事件A,它的概率定義為:P(A)=m/n,其中n表示該試驗中所有可能出現的基本結果的總數目。m表示事件A包含的試驗基本結果數。這種定義概率的方法稱為概率的古典定義。
頻率定義
隨着人們遇到問題的複雜程度的增加,等可能性逐漸暴露出它的弱點,特別是對於同一事件,可以從不同的等可能性角度算出不同的概率,從而產生了種種悖論。另一方面,隨着經驗的積累,人們逐漸認識到,在做大量重複試驗時,隨着試驗次數的增加,一個事件出現的頻率,總在一個固定數的附近擺動,顯示一定的穩定性。R.von米澤斯把這個固定數定義為該事件的概率,這就是概率的頻率定義。從理論上講,概率的頻率定義是不夠嚴謹的。
統計定義
在一定條件下,重複做n次試驗,nA為n次試驗中事件A發生的次數,如果隨着n逐漸增大,頻率nA/n逐漸穩定在某一數值p附近,則數值p稱為事件A在該條件下發生的概率,記做P(A)=p。這個定義成為概率的統計定義。
在歷史上,第一個對"當試驗次數n逐漸增大,頻率nA穩定在其概率p上"這一論斷給以嚴格的意義和數學證明的是雅各布·伯努利(Jacob Bernoulli)。
從概率的統計定義可以看到,數值p就是在該條件下刻畫事件A發生可能性大小的一個數量指標。
由於頻率nA/n總是介於0和1之間,從概率的統計定義可知,對任意事件A,皆有0≤P(A)≤1,P(Ω)=1,P(Φ)=0。其中Ω、Φ分別表示必然事件(在一定條件下必然發生的事件)和不可能事件(在一定條件下必然不發生的事件)。
公理化定義
柯爾莫哥洛夫(kolmogorov)於1933年給出了概率的公理化定義,如下:
設E是隨機試驗,S是它的樣本空間。對於E的每一事件A賦於一個實數,記為P(A),稱為事件A的概率。這裡P(·)是一個集合函數,P(·)要滿足下列條件:
(1)非負性:對於每一個事件A,有P(A)≥0;
(2)規範性:對於必然事件Ω,有P(Ω)=1;
(3)可列可加性:設A1,A2……是兩兩互不相容的事件,即對於i≠j,Ai∩Aj=φ,(i,j=1,2……),則有
P(A1∪A2∪……)=P(A1)+P(A2)+……
名詞
事件
在一個特定的隨機試驗中,稱每一可能出現的結果為一個基本事件,全體基本事件的集合稱為基本空間。隨機事件(簡稱事件)是由某些基本事件組成的,例如,在連續擲兩次骰子的隨機試驗中,用Z,Y分別表示第一次和第二次出現的點數,Z和Y可以取值1、2、3、4、5、6,每一點(Z,Y)表示一個基本事件,因而基本空間包含36個元素。"點數之和為2"是一事件,它是由一個基本事件(1,1)組成,可用集合{(1,1)}表示,"點數之和為4"也是一事件,它由(1,3),(2,2),(3,1)3個基本事件組成,可用集合{(1,3),(3,1),(2,2)}表示。如果把"點數之和為1"也看成事件,則它是一個不包含任何基本事件的事件,稱為不可能事件。P(不可能事件)=0。在試驗中此事件不可能發生。如果把"點數之和小於40"看成一事件,它包含所有基本事件,在試驗中此事件一定發生,所以稱為必然事件。P(必然事件)=1。實際生活中需要對各種各樣的事件及其相互關係、基本空間中元素所組成的各種子集及其相互關係等進行研究。
在一定的條件下可能發生也可能不發生的事件,叫做隨機事件。
通常一次實驗中的某一事件由基本事件組成。如果一次實驗中可能出現的結果有n個,即此實驗由n個基本事件組成,而且所有結果出現的可能性都相等,那麼這種事件就叫做等可能事件。
不可能同時發生的兩個事件叫做互斥事件。
對立事件。即必有一個發生的互斥事件叫做對立事件。