概率论
概率论( probability theory ),贝叶斯定理机率论或概率论是研究随机性或不确定性等现象的数学。更精确地说,机率论是用来模拟实验在同一环境下会产生不同结果的情状。典型的随机实验有掷骰子、扔硬币、抽扑克牌概率论以及轮盘游戏等。[1]
概率论 | |
---|---|
目录
基本信息
基本概述
贝叶斯定理机率论或概率论是研究随机性或不确定性等现象的数学。更精确地说,机率论是用来模拟实验在同一环境下会产生不同结果的情状。典型的随机实验有掷骰子、扔硬币、抽扑克牌以及轮盘游戏等。
整体简介
概率论是研究随机现象数量规律的数学分支。随机现象是相对于决定性现象而言的。在一定条件下必然发生某一结果的现象称为决定性现象。例如在标准大气压下,纯水加热到100℃时水必然会沸腾等。随机现象则是指在基本条件不变的情况下,一系列试验或观察会得到不同结果的现象。
每一次试验或观察前,不能肯定会出现哪种结果,呈现出偶然性。例如,掷一硬币,可能出现正面或反面,在同一工艺条件下生产出的灯泡,其寿命长短参差不齐等等。随机现象的实现和对它的观察称为随机试验。随机试验的每一可能结果称为一个基本事件,一个或一组基本事件统称随机事件,或简称事件。
基本起源
概率论是一门研究事情发生的可能性的学问,但是最初概率论的起源与赌博问题有关。16世纪,意大利的学者吉罗拉莫·卡尔达诺(Girolam oCardano,1501——1576)开始研究掷骰子等赌博中的一些简单问题。
17世纪中叶,当时的法国宫廷贵族里盛行着掷骰子游戏,游戏规则是玩家连续掷 4 次骰子,如果其中没有 6 点出现,玩家赢,如果出现一次 6 点,则庄家(相当于赌场)赢。按照这一游戏规则,从长期来看,庄家扮演赢家的角色,而玩家大部分时间是输家,因为庄家总是要靠此为生的,因此当时人们也就接受了这种现象。
后来为了使游戏更刺激,游戏规则发生了些许变化,玩家这回用 2 个骰子连续掷 24 次,不同时出现2个6点,玩家赢,否则庄家赢。当时人们普遍认为,2 次出现 6 点的概率是一次出现 6 点的概率的 1 / 6 ,因此 6 倍于前一种规则的次数,也既是 24 次赢或输的概率与以前是相等的。
然而事实却刚好相反,从长期来看,这回庄家处于输家的状态,于是他们去请教当时的数学家帕斯卡,求助其对这种现象作出解释,这个问题的解决直接推动了概率论的产生。
有人对博弈中的一些问题发生争论,其中的一个问题是“赌金分配问题”,他们决定请教法国数学家帕斯卡(Pascal)和费马(Fermat)基于排列组合方法,研究了一些较复杂的赌博问题,他们解决了分赌注问题、赌徒输光问题。
他们对这个问题进行了认真的讨论,花费了3年的思考,并最终解决了这个问题,这个问题的解决直接推动了概率论的产生。 概率与统计的一些概念和简单的方法,早期主要用于赌博和人口统计模型。随着人类的社会实践,人们需要了解各种不确定现象中隐含的必然规律性,并用数学方法研究各种结果出现的可能性大小,从而产生了概率论,并使之逐步发展成一门严谨的学科
。概率与统计的方法日益渗透到各个领域,并广泛应用于自然科学、经济学、医学、金融保险甚至人文科学中。
数学家和精算师认为机率是在0至1之间之闭区间的数字,指定给一发生与失败是随机的“事件”。机率P(A)根据机率公理来指定给事件A。一事件A在一事件B确定发生后会发生的机率称为B给之A的条件机率;其数值为
整体发展
随着18、19世纪科学的发展,人们注意到在某些生物、物理和社会现象与机会游戏之间有某种相似性,从而由机会游戏起源的概率论被应用到这些领域中;同时这也大大推动了概率论本身的发展。使概率论成为数学的一个分支的奠基人是瑞士数学家j.伯努利,他建立了概率论中第一个极限定理,即伯努利大数定律,阐明了事件的频率稳定于它的概率。
随后棣莫弗和p.s.拉普拉斯又导出了第 二个基本极限定理(中心极限定理)的原始形式。拉普拉斯在系统总结前人工作的基础上写出了《分析的概率理论》,明确给出了概率的古典定义,并在概率论中引入了更有力的分析工具,将概率论推向一个新的发展阶段。
19世纪末,俄国数学家p.l.切比雪夫、a.a.马尔可夫、a.m.李亚普诺夫等人用分析方法建立了大数定律及中心极限定理的一般形式,科学地解释了为什么实际中遇到的许多随机变量近似服从正态分布。20世纪初受物理学的刺激,人们开始研究随机过程。这方面a·n·柯尔莫哥洛夫、n.维纳、a·a·马尔可夫、a·r·辛钦、p·莱维及w·费勒等人作了杰出的贡献。
其实学概率论有什么用
概率论渗透到现代生活的方方面面。正如19世纪法国著名数学家拉普拉斯所说:“对于生活中的大部分,最重要的问题实际上只是概率问题。你可以说几乎我们所掌握的所有知识都是不确定的,只有一小部分我们能确定地了解。甚至数学科学本身,归纳法、类推法和发现真理的首要手段都是建立在概率论的基础之上。因此,整个人类知识系统是与这一理论相联系的……”
下面是历史上的一些案例。
婴儿出生时的男女比例
一般人或许认为:生男生女的可能性是相等的,因而推测出男婴和女婴的出生数的比应当是1:1,可事实并非如此.
公元1814年,法国数学家拉普拉斯(Laplace 1794-1827)在他的新作《概率的哲学探讨》一书中,记载了一下有趣的统计.他根据伦敦,彼得堡,柏林和全法国的统计资料,得出了几乎完全一致的男婴和女婴出生数的比值是22:21,即在全体出生婴儿中,男婴占51.2%,女婴占48.8%.
可奇怪的是,当他统计1745-1784整整四十年间巴黎男婴出生率时,却得到了另一个比是25:24,男婴占51.02%,与前者相差0.14%.对于这千分之一点四的微小差异,拉普拉斯感到困惑不解,他深信自然规律,他觉得这千分之一点四的后面,一定有深刻的因素.于是,他深入进行调查研究,终于发现:当时巴黎人“重女轻男”,有抛弃男婴的陋俗,以至于歪曲了出生率的真相,经过修正,巴黎的男女婴的出生比率依然是22:21.
一名优秀数学家=10个师
在第二次世界大战中,美国曾经宣布:一名优秀数学家的作用超过10个师的兵力.这句话有一个非同寻常的来历.
1943年以前,在大西洋上英美运输船队常常受到德国潜艇的袭击,当时,英美两国限于实力,无力增派更多的护航舰,一时间,德军的“潜艇战”搞得盟军焦头烂额.
为此,有位美国海军将领专门去请教了几位数学家,数学家们运用概率论分析后分析,舰队与敌潜艇相遇是一个随机事件,从数学角度来看这一问题,它具有一定的规律性.一定数量的船(为100艘)编队规模越小,编次就越多(为每次20艘,就要有5个编次),编次越多,与敌人相遇的概率就越大.
美国海军接受了数学家的建议,命令舰队在指定海域集合,再集体通过危险海域,然后各自驶向预定港口.结果奇迹出现了:盟军舰队遭袭被击沉的概率由原来的25%降为1%,大大减少了损失,保证了物资的及时供应.
什么是概率天气预报
概率天气预报是用概率值表示预报量出现可能性的大小,它所提供的不是某种天气现象的\"有\"或\"无\",某种气象要素值的\"大\"或\"小\",而是天气现象出现的可能性有多大。如对降水的预报,传统的天气预报一般预报有雨或无雨,而概率预报则给出可能出现降水的百分数,百分数越大,出现降水的可能性越大。
一般来讲,概率值小于或等于30%,可认为基本不会降水;概率值在30%-60%,降水可能发生,但可能性较小;概率在60%-70%,降水可能性很大;概率值大于70%,有降水发生。概率天气预报既反映了天气变化确定性的一面,又反映了天气变化的不确定性和不确定程度。在许多情况下,这种预报形式更能适应经济活动和军事活动中决策的需要。
艾滋病的传染概率有多大
艾滋病传染概率有多大?据地坛医院性传播疾病防治中心徐克沂主任介绍,艾滋病是通过3种传播途径传染给他人的,即:血液传播、性传播、母婴传播。如果一个正常人输进了HIV(艾滋病病毒)阳性感染者或艾滋病病人的血液其感染的概率是95%,
而一个HIV阳性感染者或已经发病的病人与一个正常人发生性关系的感染概率和性别有一定关系,男传给女的概率是0.2%,女传给男的概率是0.l%,男传男的概率要比以上两种方式大得多。如果母亲是一个HIV阳性或艾滋病的病人,其感染给胎儿的概率是25%,但是如果母亲经过AZT的抗病毒治疗,其胎儿的感染概率下降到8%;经过联合疗法(鸡尾酒疗法)治疗胎儿的感染概率可能下降为2%。
艾滋病病毒是一种十分脆弱的病毒,它对热和干燥十分敏感。在干燥的环境中,艾滋病毒10分钟死亡,在60摄氏度的环境中30分钟灭活。如果一支刚接触病人身体带有血液的注射器,马上刺入正常人体内,其感染的概率小于0.3%。蚊虫叮咬不会传染艾滋病就是因为这个原因。
锣密鼓开展,例如用传统医学方法研制的艾滋疫苗;用中医药技术研发的艾滋抗体及从计划生育角度转而提倡运用的“避孕套”,这些都让我们看到人类克服艾滋病的曙光。
彩票中奖概率话你知
“36选7”“26选5”概率据有关专家介绍,广东省目前发行的体彩“36选7”、南粤风采“36选7”、南粤风采“26选5”均属于数字组合型玩法,其中奖概率的计算方式也是相同的,其中“36选7”玩法的头奖命中概率为1/8347680,“26选5”玩法的头奖命中概率为1/65780;目前体彩“36选7”二次开奖的中奖概率仍为1/8347680.
南粤风采“36选7”全省特别奖(中8个号码)的中奖概率为1/32060340,南粤风采“36选7”南粤福星奖(中9个号码)的中奖概率为1/94143280,南粤风采“26选5”幸运奖(中7个号码)的中奖概率为1/657800。
吸烟危及生命概率:50%戒烟等于自救
1987年11月,世界卫生组织(WHO)在日本东京举行的第6届吸烟与健康国际会议上,建议把1988年4月7日,也就是世界卫生组织成立40周年纪念日,作为“世界无烟日”,提出“要吸烟还是要健康”的口号。1989年,世界卫生组织又把这一天改定在每年的5月31日。
今年5月31日,我们将迎来第17个世界无烟日,但目前我国吸烟现状却不容乐观:烟民人数不断增加,达3.2亿人,烟民平均年龄在降低,女烟民及青少年吸烟的数量在不断增加。 大家都玩过抓阄,这种游戏很有意思.
而且也是大家认为最公平的一种选择方式,这里面用的不也是概率么?仍硬币也是抓阄的一种形式,只不过是两者选择其中的一个,不同的概率而已。许多游戏的设计,要么纯粹就是概率,要么是利用概率骗人。真要去玩的话,当然得看到事物的本质了,否则岂不是很傻啊。
上面说的东西或许大家都比较容易理解,但是有些概率估计大家就无法去得出一个比较确切的结论,而且因此n多的人为此迷茫。譬如,对于一个憧憬爱情的人来说,如果被问到:你觉得你碰到你的理想另一半的概率是多少?有多少人能够回答。
当然,我们可以说上天为每个人都安排了另一个,但是这是一个概率问题,而不是100%的问题。还有,每个人认为自己将来变成富豪的可能性有多大?这个问题,估计也是千奇百怪的回答。有的人说可能性没有,真的吗?理性的说,任何人都有发达的可能性,除了他是死人。在我前面的博客里面提到了关于相亲问题,这里我们也来看看它的概率问题。