植物 (有葉綠素和細胞壁能夠進行自養的真核生物)
植物 (有葉綠素和細胞壁能夠進行自養的真核生物) |
植物(Plants)是生命的主要形態之一,包含了如樹木、灌木、藤類、青草、蕨類,及綠藻、地衣等熟悉的生物。植物可以分為種子植物、藻類植物、苔蘚植物、蕨類植物等,據估計現存大約有450 000個物種。綠色植物大部分的能源是經由光合作用從太陽光中得到的,溫度、濕度、光線、淡水是植物生存的基本需求。被子植物共有六大器官:根、莖、葉、花、果實、種子。
綠色植物具有光合作用的能力——藉助光能及葉綠素,在酶的催化作用下,利用水、無機鹽和二氧化碳進行光合作用,釋放氧氣,產生葡萄糖等有機物,供植物體利用。
目錄
基本信息
- 中文名; 植物 外文名Plants,vegetation
- 別 名; 植被 域真核生物域
- 界;植物界
- 拼音; zhí wù
- 分 類;藻類植物、苔蘚類植物、蕨類植物、種子植物
- 種 類; 藻類等 詞語類型 名詞
定義
在自然界中,凡是有生命的機體,均屬於生物。生物應分為幾個界,把能固着生活和自養的生物稱為植物界,簡稱植物。
植物有明顯的細胞壁和細胞核,其細胞壁由葡萄糖聚合物——纖維素構成。植物具有光合作用的能力——就是說它可以藉助光能及動物體內所不具備的葉綠素,利用水、礦物質和二氧化碳生產食物。釋放氧氣後,剩下葡萄糖——含有豐富能量的物質,作為植物細胞的組成部分。
亞里士多德將生物區分成植物(通常是不移動的)和動物(時常會移動去獲取食物)兩種。在林奈系統里,則被分為了植物界和動物界兩界。後來,人們漸漸了解過原本定義的植物界中包含了數個不相關的類群,並將真菌和數種藻類移至新的界去。然而,對於植物仍然有許多種看法,不論是在專業上的,還是在一般大眾的眼中來看。而也確實,若試圖要完美地將「植物」放至單一個分類里是會發生問題的,因為對於大多數的人而言,「植物」這一詞對現今分類學和系統分類學所立基的種系發生學的概念之間的關聯性並不是很清楚,繁殖方法主要有壓條、分株、扦插、嫁接、種子、孢子等。 注:現在有泛植物界這個分類。
植物分類
生命的起源是由化學物質構成的DNA和原生漿液。植物歷史距今二十五億年前(元古代),地球史上最早出現的植物屬於菌類和藻類,其後藻類一度非常繁盛。直到四億三千八百萬年前(志留紀),綠藻擺脫了水域環境的束縛,首次登陸大地,
進化為裸蕨類植物和蕨類植物。為大地首次添上綠裝。三億六千萬年前(石炭紀),裸蕨滅絕,蕨類植物衰落。代之而起是石松類、楔葉類、真蕨類和種子蕨類,形成沼澤森林。古生代盛產的主要植物於二億四千八百萬年前(三疊紀)幾乎全部滅絕,而裸子植物開始興起,進化出花粉管,並完全擺脫對水的依賴,形成茂密的森林。在距今1億4000萬年前白堊紀開始的時候,更新、更進步的被子植物就已經從某種裸子植物當中分化出來。進入新生代以後,由於地球環境由中生代的全球均一性熱帶、亞熱帶氣候逐漸變成在中、高緯度地區四季分明的多樣化氣候,蕨類植物因適應性的欠缺進一步衰落,裸子植物也因適應性的局限而開始走上了下坡路。這時,被子植物在遺傳、發育的許多過程中以及莖葉等結構上的進步性,尤其是它們在花這個繁殖器官上所表現出的巨大進步性發揮了作用,使它們能夠通過本身的遺傳變異去適應那些變得嚴酷的環境條件反而發展得更快,分化出更多類型,到現代已經有了80多個目、200多個科。正是被子植物的花開花落,才把四季分明的新生代地球裝點得分外美麗。
據估計,現存大約有350000個植物物種,被分類為種子植物、苔蘚植物、蕨類植物和藻類植物。直至2004年,其中的287655個物種已被確認,有258650種開花植物、16000種苔蘚植物、11000種蕨類植物和8000種綠藻。
植物共有六大器官:根、莖、葉、花、果實、種子。莖是植物體中軸部分。直立或匍匐於水中,莖上生有分枝,分枝頂端具有分生細胞,進行頂端生長。莖一般分化成短的節和長的節間兩部分。莖具有輸導營養物質和水分以及支持葉、花和果實在一定空間分布成形的作用。有的莖還具有光合作用、貯藏營養物質和繁殖的功能。葉是維管植物營養器官之一。功能為進行光合作用合成有機物,並有蒸騰作用提供根系從外界吸收水和礦質營養的動力。花是具有繁殖功能的變態短枝。果實主要是作為傳播種子的媒介。種子具有繁殖和傳播的作用,種子還有種種適於傳播或抵抗不良條件的結構,為植物的種族延續創造了良好的條件。
根是植物的營養器官,通常位於地表下面,負責吸收土壤裡面的水分及溶解其中的離子,並且具有支持、貯存合成有機物質的作用。(氣生根和固着根除外)根由薄壁組織、維管組織、保護組織、機械組織和分生組織細胞組成。
根可分為四個區,最頂端的是帽狀結構——根冠,以上是分生區和伸長區,再上則是帶根毛的根毛區。
根冠位於根頂端分生組織的外面。外層細胞壁的高度粘液化可以減少根在往下生長過程中與土壤接觸的摩擦力,起到保護作用。同時細胞中的造粉體還可保證根的向地生長,即保證其向地性(Gravitropism)
分生區是位於根冠內方的頂端分生組織。分生區細胞能不斷分裂,一方面小部分用來形成根冠細胞,而大部分則向後經過細胞的生長、分化,形成根的各種結構;另一方面保持自身原有的體積。
伸長區的細胞由分生區細胞發展而來,分裂能力已減弱,細胞延長軸伸長。伸長活動會導致原生韌皮部和初生木質部損壞,使之出現缺層(Lacuna)。 根毛區細胞已是成熟的細胞。根毛由表皮中的毛細胞(Trichoblast)生成,可有效地增大植物根部的吸收區域。樹木根部的吸收面積可達400M²。
莖是植物的營養器官之一。是大多數植物可見的主幹。當然,例如仙人掌的變態莖。莖下接根,通過木質部將根部吸收到的水分和礦物質往上運輸到各營養器官,通過韌皮部將光合作用的產物往下運輸。莖來源於植物胚胎的胚芽。胚軸組成部分的莖,準確地說是子葉下的部分。
最早擁有莖的植物為現已絕種的庫氏裸蕨,現存則是松葉蕨,他們沒有真正的根、葉。因此維管束植物(導管植物)中,最早出現的器官是莖,根葉則是由莖演化而成。
變態莖
有些植物的莖,其功用已經特化不只是支持和運輸的功能,其形態也不只是着生枝葉,我們稱之變態莖。
常見的有仙人掌的塊莖、洋蔥的鱗莖、荸薺的球莖、姜的根莖、草莓的走莖、葡萄的卷鬚(莖卷鬚),還有莖(枝條)特化成葉狀的蘆筍等。
葉是高等植物的營養器官,側邊發育自植物的莖的葉原基。葉內含有葉綠素,是植物進行光合作用的主要場所。同時,植物的蒸散作用是通過葉的氣孔實現的。 葉只出現在真正的莖上,即只有維管植物才有葉。蕨類、裸子植物和被子植物等所有高等植物都有葉。相對地,苔蘚植物、藻類、真菌和地衣則沒有葉。在這些扁平體(Thallus)中只能找到與葉相似的結構,但只能作為類似物(Analoga)。 完全葉包含三部分:葉片,葉柄和托葉。
葉片指的是完全葉上扁平的主體結構。它會儘可能地吸收陽光,並通過氣孔調節植物體內水分和溫度。 葉柄是連接葉片與莖節的部分。
托葉着生於葉柄基部兩側或葉腋處,細小,早落。不同的植物種類,托葉的形態也不同。例如豌豆有着大的葉片狀托葉,而洋槐和酸棗的托葉則是針形,山櫻花的托葉為羽狀。其作用是保護幼葉。
變態葉
變態葉由於功能改變所引起的形態和結構都發生變化的葉。如仙人掌的刺,玉葉金花的大萼片和開花植物的心皮。
花生於花托上,最外面是花瓣(或花被片),中間包裹着植物的生殖器官,雄蕊及雌蕊。花鮮艷的顏色及誘人的香氣,都是為了吸引昆蟲前來。在昆蟲的幫助下,完成授粉的過程,達到傳宗接代的目的。多數草類及樹木的花朵顏色暗淡,沒有香氣,不能吸引昆蟲前來授粉,這種植物一般靠風力完成授粉過程。根據植物的不同,多數植物每年會開上百朵花,少數植物,如鬱金香,一年只開一朵花。花期的長短也相差很大。
花萼位於最外層的一輪萼片,通常為綠色,但也有些植物的呈花瓣狀。
花冠位於花萼的內輪,由花瓣組成,較為薄軟,常有顏色以吸引昆蟲幫助授粉。
雄蕊群是一朵花內雄蕊的總稱,花葯着生於花絲頂部,是形成花粉的地方,花粉中含有雄配子。
雌蕊群是一朵花內雌蕊的總稱,可由一個或多個雌蕊組成。組成雌蕊的繁殖器官稱為心皮,包含有子房,而子房室內有胚珠(內含雌配子)。一個雌蕊可能由多個心皮組成,在這種情況下,若每個心皮分離形成離生的單雌蕊,即稱為離心皮雌蕊,反之若心皮合生,則稱為復雌蕊。雌蕊的黏性頂端稱為柱頭,是花粉的受體。花柱連接柱頭和子房,是花粉粒萌發後花粉管進入子房的通道。
果實由花的雌蕊發育而來,多數植物的種子包裹在果實裡面。草莓的「果實」由花托生長而來,是一個例外。一個果實內部的種子數量各不相同,有些只有一籽,有些則很多。果實成熟時,有些富含水分,有些則變干。含水的果實通常顏色鮮艷,可以吸引動物將其吃掉,而將種子帶到遠方,當種籽排出體外,就會生根發芽。有些豆科植物及其他類植物,在果實成熟後會爆裂開來,將種子射到附近,伺機發芽。有些果實重量很輕,當風吹過,會被風帶到遙遠的地方,完成他們傳宗接代的任務。有些植物的果實,表面帶有毛刺,可以沾到經過的動物身上,由動物帶到遠方。當從動物身上脫落時,種子就地生根發芽。 由受精後雌蕊子房單一發育形成的果實稱為真果,如桃、大豆等;通常把僅由子房稱為真果,如桃、大豆等。
由子房加上花的其他部分(花萼、花被、花軸等)形成的果實稱為假果,如蘋果、梨等。有萼和花萼參與的,如草莓,果實大都是增大而肉質的花托。
種子是種子植物的胚珠經受精後長成的結構,一般有種皮、胚和胚乳等組成。胚是種子中最主要的部分,萌發後長成新的個體。胚乳含有營養物質。 種皮由珠被發育而來,有保護胚與胚乳的功能。裸子植物的種皮由外層、內層(肉質層)、中層(石質層)組成。蘇鐵和銀杏,外層的肉質層肥厚,成熟時具色素;許多松柏類植物的外層不發達。內層一般趨向皺縮,在成熟的種子中呈紙狀薄層,襯貼在中層裡面。
胚由受精卵發育成。由胚芽、胚軸、子葉、胚根組成。裸子植物的胚沿種子的中央縱軸排列,不同種類種子,子葉數不同,為1~18個。常見為兩個,如蘇鐵、銀杏、紅豆杉、香榧、紅杉、買麻藤、麻黃等。
裸子植物胚乳是單倍體的雌配子體,一般比較發達,多儲藏澱粉或脂肪,也有的含糊粉粒。胚乳一般為淡黃色,少數為白色,銀杏成熟的種子中胚乳呈綠色。 被子植物的胚乳在雙受精過程中,一個精子與胚囊中的極核融合發育成多倍體。多數被子植物在種子發育中有胚乳形成,但有的成熟種子中不具、具很少的胚乳,由於它們的胚乳在發育中被胚分解吸收了。一般把成熟的種子分有胚乳種子、無胚乳種子。無胚乳種子中胚很大,胚體各部分,特別在子葉中儲有大量營養物質。
主要作用
植物大多數固態物質是從大氣層中取得。經由一個被稱為光合作用的過程,植物利用陽光里的能源來將大氣層中的二氧化碳轉化成簡單的糖。這些糖分被用作建材,並構成植物主要結構成份。植物主要依靠土壤作為支撐和取得水份,以及氮、磷等重要基本養分。大部分植物要能成功地成長,也需要大氣中的氧氣(作為呼吸之用)及根部周圍的氧氣。不過,一些特殊維管植物如紅樹林可以讓其根部在缺氧環境下成長。
植物具有光合作用的能力——就是說它可以藉助光能及動物體內所不具備的葉綠素,利用水、無機鹽和二氧化碳進行光合作用,釋放氧氣,產生葡萄糖——含有豐富能量的物質,供植物體利用。
植物的葉綠素含有鎂。
植物細胞有明顯的細胞壁和細胞核,其細胞壁由葡萄糖聚合物——纖維素構成。
所有植物的祖先都是單細胞非光合生物,它們吞食了光合細菌,二者形成一種互利關係:光合細菌生存在植物細胞內(即所謂的內共生現象)。最後細菌蛻變成葉綠體,它是一種在所有植物體內都存在卻不能獨立生存的細胞器。大多數植物都屬於被子植物門,是有花植物,其中還包括多種樹木。植物呼吸作用主要在細胞的線粒體進行;光合作用在細胞的葉綠體進行。
綠色植物光合作用是地球上最為普遍、規模最大的反應過程,在有機物合成、蓄積太陽能量和淨化空氣、保持大氣中氧氣含量和碳循環的穩定等方面起很大作用,是農業生產的基礎,在理論和實踐上都具有重大意義。據計算,整個世界的綠色植物每天可以產生約4億噸的蛋白質、碳水化合物和脂肪,與此同時,還能向空氣中釋放出近5億噸還多的氧,為人和動物提供了充足的食物和氧氣。
葉片是進行光合作用的主要器官,葉綠體是光合作用的重要細胞器。高等植物的葉綠體色素包括葉綠素(a和b)和類胡蘿蔔素(胡蘿蔔素和葉黃素),它們分布在光合膜上。葉綠素的吸收光譜和熒光現象,說明它可吸收光能、被光激發。葉綠素的生物合成在光照條件下形成,既受遺傳性制約,又受到光照、溫度、礦質營養、水和氧氣等的影響。
光合作用包括光反應過程、光合碳同化二個相互聯繫的步驟,光反應過程包括原初反應和電子傳遞與光合磷酸化兩個階段,其中前者進行光能的吸收、傳遞和轉換,把光能轉換成電能,後者則將電能轉變為ATP和NADPH2(合稱同化力)這兩種活躍的化學能。活躍的化學能轉變為穩定化學能是通過碳同化過程完成的。碳同化有C3、C4和CAM三條途徑,根據碳同化途徑的不同,把植物分為C3植物、C4植物和CAM植物。
但C3途徑是所有的植物所共有的、碳同化的主要形式,其固定CO2的酶是RuBP羧化酶。C4途徑和CAM途徑都不過是CO2固定方式不同,最後都要在植物體內再次把CO2釋放出來,參與C3途徑合成澱粉等。C4途徑和CAM途徑固定CO2的酶都是PEP羧化酶,其對CO2的親和力大於RuBP羧化酶,C4途徑起着CO2泵的作用;CAM途徑的特點是夜間氣孔開放,吸收並固定CO2形成蘋果酸,晝間氣孔關閉,利用夜間形成的蘋果酸脫羧所釋放的CO2,通過C3途徑形成糖。這是在長期進化過程中形成的適應性。
光呼吸是綠色細胞吸收O2放出CO2的過程,其底物是C3途徑中間產物RuBP加氧形成的乙醇酸。整個乙醇酸途徑是依次在葉綠體、過氧化體和線粒體中進行的。C3植物有明顯的光呼吸,C4植物光呼吸不明顯。
植物光合速率因植物種類品種、生育期、光合產物積累等的不同而異,也受光照、CO2、溫度、水分、礦質元素、O2等環境條件的影響。這些環境因素對光合的影響不是孤立的,而是相互聯繫、共同作用的。在一定範圍內,各種條件越適宜,光合速率就越快。
植物光能利用率還很低。作物現有的產量與理論值相差甚遠,所以增產潛力很大。要提高光能利用率,就應減少漏光等造成的光能損失和提高光能轉化率,主要通過適當增加光合面積、延長光合時間、提高光合效率、提高經濟產量係數和減少光合產物消耗。
改善光合性能是提高作物產量的根本途徑。
植物的光合作用是會產生氧氣,植物的生態價值,對碳原子只有暫時的固定作用……因為所固定的這些碳原子最終都會被呼吸作用,微生物分解,或者被燃燒……[1]
參考文獻
- ↑ 趣知識;植物為何大部分是綠色的、神奇的竹子水稻等,黑瞳娛樂新視野, 19-03-02