成像光谱仪
名词解释
成像光谱仪是新一代传感器。在20世纪80年代初正式开始研制。研制这类仪器的主要目的是想在获取大量地物目标窄波段连续光谱图像的同时,获得每个像元几乎连续的光谱数据,因而称为成像光谱仪。成像光谱仪主要应用于高光谱航空遥感。在航天遥感领域高光谱也开始应用。
国际上正在迅速发展的一种新型传感器称为成像光谱仪,它是以多路、连续并具有高光谱分辨率方式获取图像信息的仪器。通过将传统的空间成像技术与地物光谱技术有机地结合在一起,可以实现对同一地区同时获取几十个到几百个波段的地物反射光谱图像。
成像光谱仪基本上属于多光谱扫描仪,其构造与CCD线阵列推扫式扫描仪和多光谱扫描仪相同,区别仅在于通道数多,各通道的波段宽度很窄。
发展背景
70年代末80年代初,在研究归纳各种地物光谱特征的基础上,形成这样一个概念:如果能实现连续的窄波段成像,那么就有可能实现地面矿物的直接识别,由此产生了光谱和图像结合为一体的成像光谱技术。1983 年美国喷气推进实验室研制出第一台航空成像光谱仪(AIS-1),随后包括中国在内的许多国家都研制成功了一系列成像光谱仪,其中有以线阵探测器为基础的光机扫描型,有以面阵探测器为基础的固态推扫型,也有以面阵探测器加光机的并扫型。
分类
成像光谱仪按其结构的不同,可分为两种类型。一种是面阵探测器加推扫式扫描仪的成像光谱仪,它利用线阵列探测器进行扫描,利用色散元件和面阵探测器完成光谱扫描。利用线阵列探测器及其沿轨道方向的运动完成空间扫描。
另一种是用线阵列探测器加光机扫描仪的成像光谱仪,它利用点探测器收集光谱信息,经色散元件后分成不同的波段,分别在线阵列探测器的不同元件上,通过点扫描镜在垂直于轨道方向的面内摆动以及沿轨道方向的运动完成空间扫描,而利用线探测器完成光谱扫描。
优点和缺点
成像光谱仪数据具有光谱分辨率极高的优点,同时由于数据量巨大,难以进行存储、检索和分析。为解决这一问题,必须对数据进行压缩处理,而且不能沿用常规少量波段遥感图像的二维结构表达方法。图像立方体就是适应成像光谱数据的表达而发展起来的一种新型的数据格式,它是类似扑克牌式的各光谱段图像的叠合。立方体正面的图像是一幅自己选择的三个波段图像合成,它是表示空间信息的二维图像,在其下面则是单波段图像叠合;位于立方体边缘的信息表达了各单波段图像最边缘各像元的地物辐射亮度的编码值或反射率,这种图像表示形式亦称为影像立方体。
从几何角度来说,成像光谱仪的成像方式与多光谱扫描仪相同,或与CCD线阵列传感器相似,因此,在几何处理时,可采用与多光谱扫描仪和CCD线阵列传感器数据类似的方法。,成像光谱仪只注重提高光谱分辨率,其空间分辨率却较低(几十甚至几百米)。正是因为成像光谱仪可以得到波段宽度很窄的多波段图像数据,所以它多用于地物的光谱分析与识别上。特别是,由于成像光谱仪的工作波段为可见光、近红外和短波红外,因此对于特殊的矿产探测及海色调查是非常有效的,尤其是矿化蚀变岩在短波段具有诊断性光谱特征。
参考文献
- ↑ 【每日积累】汉字的概述?汉字的特点是什么?,搜狐,2021-06-26
- ↑ 中国书法:一门古老的艺术!,搜狐,2018-07-17