张光磊
人物简历
教育经历
[1].2010.9 -- 2014.7 清华大学 生物医学工程 博士研究生毕业 博士
[2].2004.9 -- 2007.4 西北工业大学 生物医学工程 硕士研究生毕业 硕士
[3].2000.9 -- 2004.7 西北工业大学 生物医学工程 大学本科毕业 学士
工作经历
[1].2022.1 -- 至今 北京航空航天大学 生物与医学工程学院 “医工百人”特聘副研究员
[2].2018.3 -- 2021.12 北京航空航天大学 医工交叉创新研究院 “医工百人”特聘副研究员
[3].2017.3 -- 2018.3 北京交通大学 医学智能研究所 副所长 副教授
[4].2015.10 -- 2016.10 美国斯坦福大学(Stanford University) 博士后
[5].2014.7 -- 2017.3 北京交通大学 计算机与信息技术学院 博士后
[6].2007.4 -- 2010.8 深圳迈瑞生物医疗电子股份有限公司 资深工程师
社会兼职
[1]. IEEE Member
[2]. 中国生物医学工程学会会员
[3]. 生物医学光子学分会会员
[4]. 医学物理分会青年委员
[5]. 中国图象图形学会会员
[6]. 中国光学工程学会高级会员
研究方向
[1] 光学分子影像三维成像方法(荧光分子断层成像-FMT、X射线激发荧光分子断层成像-XLCT等)
[2] 医学影像人工智能分析方法(利用机器学习、深度学习等技术对CT、MRI等医学影像进行智能分析)
[3] 医学智能可穿戴式诊疗设备(可穿戴式心电、血压、血氧、血糖、呼吸、体温等人体基本生理参数检测设备研究)
学术成果
论文
[1] W. Yan, C. Ma, X. Cai, Y. Sun, G. Zhang*, and W. Song*, “Self-powered and wireless physiological monitoring system with integrated power supply and sensors,” Nano Energy, 2023, 108, 108203. (SCI, Q1, IF=19.069)
[2] X. Zhao, P. Zhang, F. Song, C. Ma, G. Fan, Y. Sun, Y. Feng, and G. Zhang*, “Prior attention network for multi-lesion segmentation in medical images,” IEEE Trans. Med. Imag., 2022, 41(12): 3812–3823. (SCI, IF=11.037)
[3] X. Zhang, X. Cao, P. Zhang, F. Song, J. Zhang, L. Zhang, and G. Zhang*, “Self-training strategy based on finite element method for adaptive bioluminescence tomography reconstruction,” IEEE Trans. Med. Imag., 2022, 41(10): 2629–2643. (SCI, IF=11.037)
[4] T. Zhang, Y. Feng, Y. Zhao, G. Fan, A. Yang, S. Lyu, P. Zhang, F. Song, C. Ma, Y. Sun, Y. Feng, and G. Zhang*, “MSHT: Multi-stage hybrid transformer for the ROSE image analysis of pancreatic cancer,” IEEE J. Biomed. Health Inform., 2023, in press. (SCI, Q1, IF=7.021)
[5] C. Ma, P. Zhang, F. Song, Y. Sun, G. Fan, T. Zhang, Y. Feng, and G. Zhang*, “KD-Informer: cuff-less continuous blood pressure waveform estimation approach based on single photoplethysmography,” IEEE J. Biomed. Health Inform., 2022, in press. (SCI, IF=7.021)
[6] P. Zhang, G. Fan, T. Xing, F. Song, and G. Zhang*, “UHR-DeepFMT: Ultra-high spatial resolution reconstruction of fluorescence molecular tomography based on 3D fusion dual-sampling deep neural network,” IEEE Trans. Med. Imag., 2021, 40(11): 3217–3228. (SCI, IF=11.037)
[7] L. Guo, F. Liu, C. Cai, J. Liu, and G. Zhang*, “3D deep encoder-decoder network for fluorescence molecular tomography,” Opt. Lett., 2019, 44(8): 1892–1895. (SCI, IF=3.560)
[8] G. Zhang*, S. Tzoumas, K. Cheng, F. Liu, J. Liu, J. Luo, J. Bai, and L. Xing, “Generalized adaptive Gaussian Markov random field for X-ray luminescence computed tomography,” IEEE Trans. Biomed. Eng., 2018, 65(9): 2130–2133. (SCI, IF=4.756)
[9] G. Zhang*, F. Liu, J. Liu, J. Luo, Y. Xie, J. Bai, and L. Xing, “Cone beam X-ray luminescence computed tomography based on Bayesian method,” IEEE Trans. Med. Imag., 2017, 36(1): 225–235. (SCI, IF=11.037)
[10] G. Zhang, H. Pu, W. He, F. Liu, J. Luo, and J. Bai, “Bayesian framework based direct reconstruction of fluorescence parametric images,” IEEE Trans. Med. Imag., 2015, 34(6): 1378–1391. (SCI, IF=11.037)[1]