打开主菜单

求真百科

尤建功

来自 江苏师范大学 的图片

尤建功 ﹐男﹐1963年3月生,江苏六合人,南开大学陈省身数学研究所教授博士生导师[1],毕业于徐州师范学院。

2021年8月1日,入选2021年中国科学院院士增选初步候选人名单[2]

目录

基本信息

人物说明----南开大学陈省身数学研究所教授、博士生导师

出生地点----江苏六合

出生日期----1963年3月

国 籍 ---- 中国

职 业 ---- 教育科研工作者

主要成就----入选2021年中国科学院院士增选初步候选人名单

毕业院校----徐州师范学院

人物简介

现任南开大学陈省身数学研究所教授、博士生导师 。1983年毕业于徐州师范学院,1986年获南京大学理学硕士学位,1989年获北京大学理学博士学位,1989-1991年在南京大学做博士后,1994年2月8日访问瑞士苏黎世高工(ETH)数学研究所﹔1995年至1997年受德国洪堡基金会资助在科隆大学和慕尼黑工业大学做合作研究﹔1998年2月至8月在罗马第三大学做访问教授。1998年成为国家非线性科学攀登项目组正式成员﹔1999年获得国家杰出青年基金﹔2000年成为国家重点基础研究发展规划项目组(非线性科学)成员。

1991年起历任南京大学讲师、副教授、教授、博士生导师、数学系主任,2016年起任南开大学陈省身数学研究所教授、博士生导师。曾在德国科隆大学和慕尼黑工大做洪堡学者;曾访问瑞士苏黎世高工(ETH)数学研究所等多所国外著名大学。在Duffing方程的稳定性,KAM理论,哈密顿偏微分方程的拟周期运动、薛定谔算子的谱理论等方面做出了一系列深刻的工作。

2018年8月1日至8月9日,第28届国际数学家大会于在巴西里约热内卢召开,尤建功教授应邀参加第28届国际数学家大会并于2日作45分钟特邀报告,报告题目为"定量几乎可约性理论及其应用",主要介绍尤建功教授与合作者在拟周期线性系统可约性及其在算子谱理论中的应用方面的一些成果。这是自2002年以来,继龙以明院士、张伟平院士之后,南开学者又一次应邀在国际数学家大会上作主题报告。

国际数学家大会(International Congress of Mathematicians,简称ICM)是由国际数学联盟主办的全球性数学学术会议,是国际数学届的盛会,每四年举办一次。会议的主要内容是进行学术交流,并在开幕式上颁发菲尔兹奖(1936年起)、奈望林纳奖(1982年起)、高斯奖(2006年起)和陈省身奖(2010年起)。首届国际数学家大会于1897年在瑞士苏黎世举行,至今共举办了27届。1900年巴黎大会之后,除两次世界大战期间外,国际数学家大会从未中断,2002年在中国北京举办了第24届大会。

在每届数学家大会上,组委会都会邀请一批在相关领域做出杰出工作的著名数学家作主题报告,这标志着数学家的工作得到了国际数学界的普遍认可和赞誉,同时,对于数学家而言,也是非常高的荣誉。

2021年8月1日,入选2021年中国科学院院士增选初步候选人名单 。

任免信息

2017年12月,当选中国民主同盟第十二届中央委员会委员。

研究方向

主要是动力系统﹐特别是Hamilton动力系统。

主要贡献

现承担国家基金委重点项目和国家重大基础研究规划项目。

研究成果主要集中在KAM理论及其在常微分方程和偏微分方程中的应用方面﹔对低维环面的KAM理论做出了重要发展﹐在第一Melnikov非共振条件下得到了不变环面的存在性﹐并用于研究了国际上非常活跃的Hamilton偏微分方程的拟周期解问题﹔研究成果否定了1994年菲尔茨奖获得者Bourgain认为KAM理论不能用于重法频率的看法﹔解决了KAM理论创始人之一Moser关於摆方程Lagrange稳定性的一个公开问题﹔受到了国际同行的重视和好评。

学术论文

1,Persistence of lower dimensional tori under the first Melnikov's non-resonance condition, to appear in Journal de Mathematiques Pures et Appliquees, 2001(with J.Xu).

2.KAM theory for lower dimensional tori of nearly integrable Hamiltonian systems, Progress in Nonlinear Analysis, edited by K-C. Chang and Y. Long, World Scientific, 2000, 409-423.

3.KAM tori for 1D nonlinear wave equations with periodic boundary condition, Communications in Mathematical Physics., Vol. 211(2), 497-525, 2000(with l, Chierchia).

4.Perturbations of lower dimensional tori for Hamiltonian systems, Journal Of Differential Equations, Vol. 152, 1-29, 1999.

5.A KAM theorem for hyperbolic type degenerate lower dimensional tori in Hamiltonian systems, Communications in Mathematical Physics, Vol. 192. 145-168, 1998.

Almost reducibility and non-perturbative reducibility of quasi-periodic linear systems. Invent. Math. 190 (2012), no. 1, 209–260. Article; E-Journal.

X. Hou and J. You

An infinite dimensional KAM theorem and its application to the two dimensional cubic Schrödinger equation. Adv. Math. 226 (2011), no. 6, 5361–5402. Article; E-Journal.

J. Geng, X. Xu and J. You

Persistence of the non-twist torus in nearly integrable Hamiltonian systems. Proc. Amer. Math. Soc. 138 (2010), no. 7, 2385–2395.Article; E-Journal.

J. Xu and J. You

Local rigidity of reducibility of analytic quasi-periodic cocycles on U(n). Discrete Contin. Dyn. Syst. 24 (2009), no. 2, 441–454.Article; E-Journal.

X. Hou and J. You

Corrigendum for the paper: "Two-dimensional invariant tori in the neighborhood of an elliptic equilibrium of Hamiltonian systems" in Acta Mathematica Sinica, English Series August 2009, Volume 25, Issue 8, pp 1363-1378. Article

H. Lu and J. You

Two-dimensional invariant tori in the neighborhood of an elliptic equilibrium of Hamiltonian systems. Acta Mathematica Sinica, English Series August 2009, Volume 25, Issue 8, pp 1363-1378. Article; E-Journal.

H. Lu and J. You

Full measure reducibility for generic one-parameter family of quasi-periodic linear systems. J. Dynam. Differential Equations 20 (2008), no. 4, 831–866. Article; E-Journal.

H. He and J. You

The rigidity of reducibility of cocycles on SO(N ,R). Nonlinearity 21 (2008),no. 10, 2317–2330. Article; E-Journal.

X. Hou and J. You

Diophantine vectors in analytic submanifolds of Euclidean spaces. Sci. China Ser. A. 50 (2007), no. 9, 1334–1338. Article; E-Journal.

R. Cao and J. You

Corrigendum for the paper: "Invariant tori for nearly integrable Hamiltonian systems with degeneracy" [Math. Z. 226 (1997), no. 3, 375–387] by Xu, You, and Q. Qiu. Math. Z. 257 (2007), no. 4, 939. Article; E-Journal.

J. Xu and J. You

Gevrey-smoothness of invariant tori for analytic nearly integrable Hamiltonian systems under Rüssmann's non-degeneracy condition. J. Differential Equations 235 (2007), no. 2, 609–622. Article; E-Journal.

J. Xu and J. You

KAM Tori for Higher Dimensional Beam Equation with Constant Potentials, Nonlinearity 19 (2006), no. 10, 2405–2423. Article; E-Journal.

J. Geng and J. You

The Existence of Integrable Invariant Manifolds of Hamiltonian Partial Differential Equations, Discrete and Continuous Dynamical Systems 16 (2006), no. 1, 227–234. Article; E-Journal.

R.Cao and J. You

An Improved Result for Positive Measure Reducibility of Quasi- periodic Linear Systems, Acta Mathematica Sinica (English series) 22 (1), 2006, 77-86. Article; E-Journal.

H. He and J. You

A KAM Theorem for Partial Differential Equations in Higher Dimensional Space, Communications in Mathematical Physics, Vol.262(2), 2006, 343-372. Article; E-Journal.

J.Geng and J.You

Umbilical Torus Bifurcations in Hamiltonian Systems, J. Differential Equations, Vol. 222(1), 2006, 233-262. Article; E-Journal.

H. Broer, H. Hanssmann and J. You

A simple proof of diffusion approximations for LBFS re-entrant lines, Oper. Res. Lett., 34(2006), no. 2, 199–204. Article; E-Journal.

J. Yang, J.G. Dai, J. You and H. Zhang

Quasi-Periodic Solutions for 1D Schrödinger Equations with Higher Order Nonlinearity, SIAM J. Mathematical Analysis, 36(2005), 1965-1990. Article; E-Journal.

Z. Liang and J. You

Bifurcations of Normally Parabolic Tori in Hamiltonian Systems, Nonlinearity, 18 (2005) 1735-1769. Article; E-Journal.

H. Broer, H. Hanssmann and J. You

A KAM Theorem for One Dimensional Schrödinger Equation with Periodic Boundary Conditions, J. Differential Equations, 209, 2005, 1-56. Article; E-Journal.

J. Geng and J. You

KAM tori of Hamiltonian perturbations of 1D linear beam equations, J.Math.Anal.Appl., 277, 2003, 104-121. Article; E-Journal.

J. Geng and J. You

A Symplectic Map and its Application to the Persistence of Lower Dimensional InvariantTori, Science in China, 45(5), 2002,598-603. Article; E-Journal.

教学

Mathematical Analysis (Fall 2005-2008, undergraduate freshman courses).

Geometrical Methods in the Theory of Ordinary Differential Equations (Fall 2009-2011, undergraduate junior courses).

Seminar of Dynamical Systems (Spring 2011-2014, undergraduate junior courses).

Dynamical Systems (Spring 2008-2010, graduate courses).

Differential Dynamical Systems (Spring 2011, graduate course).

Hamiltonian Systems and N-Body Problems(Spring 2012, graduate course).

Chaos in Dynamical Systems (Spring 2013, graduate course).

获奖记录

曾获得国家杰出青年基金、香港求是科技基金会杰出青年学者奖、中国高校科技进步奖一等(排名第二)、第六届江苏省青年科技奖、国家自然科学二等奖(排名第三)[3]

2022年11月,尤建功因其对动力系统的重要贡献,获得2024年度发展中国家科学院(英文简称TWAS)数学奖。

参考来源