打开主菜单

求真百科

孟增

孟增,男,合肥工业大学土木与水利工程学院副教授。

目录

人物履历

教育背景

2005/09–2009/06,兰州大学,理论与应用力学,学士

2009/09–2011/06,大连理工大学,工程力学,硕士(硕博连读)

2011/09–2015/10,大连理工大学,工程力学,博士(硕博连读)

工作经历

2015/10–2017/12,合肥工业大学,土木与水利工程学院,讲师

2018/12–至 今,合肥工业大学,土木与水利工程学院,副教授

2020/10–至 今,合肥工业大学,土木与水利工程学院,博导

科研项目

[1] 国家自然科学基金面上项目,功能梯度板壳的高置信度混合不确定性分析及拓扑优化设计, 2020/01-2023/12,主持.

[2] 优秀青年人才培育计划A项目,高置信度结构可靠性拓扑优化算法研究, 2020/01-2022/12,主持.

[3] 国家自然科学青年科学基金,含缺陷加筋薄壁结构的全局可靠性优化设计方法研究, 2017/01-2019/12,主持.

[4] 安徽省自然科学青年科学基金,加筋筒壳结构后验可靠性优化设计方法研究, 2017/01-2019/12,主持.

[5] 国家重点实验室开放课题项目,多源不确定性下工业机器人定位精度时变可靠性分析及优化设计, 2020/09-2022/12,主持.

获奖情况

[1] 复杂系统可靠性优化设计方法及应用研究,安徽省力学学会力学科技进步奖,2020,排名1/2

学术成果

[1] Meng Z, Li G, Wang X, Sait S M, Yıldız A R. A Comparative Study of Metaheuristic Algorithms for Reliability-Based Design Optimization Problems [J]. Archives of Computational Methods in Engineering, 2021, 28 (3): 1853-1869.

[2] Meng Z, Pang Y, Pu Y, Wang X. New hybrid reliability-based topology optimization method combining fuzzy and probabilistic models for handling epistemic and aleatory uncertainties [J]. Computer Methods in Applied Mechanics and Engineering, 2020, 363 112886.

[3] Meng Z, Zhang Z H, Zhou H L, et al. Robust design optimization of imperfect stiffened shells using an active learning method and a hybrid surrogate model [J]. Engineering Optimization, 2020, 52 (12): 2044-2061.

[4] Meng Z, Zhang Z, Zhou H. A novel experimental data-driven exponential convex model for reliability assessment with uncertain-but-bounded parameters [J]. Applied Mathematical Modelling, 2020, 77 773-787.

[5] Meng Z, Zhang Z, Li G, et al. An active weight learning method for efficient reliability assessment with small failure probability [J]. Struct Multidisc Optim, 2020, 61 (3): 1157-1170.

[6] Meng Z, Zhang D, Li G, et al. An importance learning method for non-probabilistic reliability analysis and optimization [J]. Struct Multidisc Optim, 2019, 59 (4): 1255-1271.

[7] Meng Z, Zhang Z H, Zhang D Q, Yang D X. An active learning method combining Kriging and accelerated chaotic single loop approach (AK-ACSLA) for reliability-based design optimization [J]. Computer Methods in Applied Mechanics and Engineering, 2019, 357 (12): 112570.

[8] Meng Z, Zhou H. New target performance approach for a super parametric convex model of non-probabilistic reliability-based design optimization [J]. Computer Methods in Applied Mechanics and Engineering, 2018, 339 (9): 644-662.

[9] Meng Z, Hu H, Zhou H. Super parametric convex model and its application for non-probabilistic reliability-based design optimization [J]. Applied Mathematical Modelling, 2018, 55 (3): 354-370.

[10] Meng Z, Zhou H L, Hu H, et al. Enhanced sequential approximate programming using second order reliability method for accurate and efficient structural reliability-based design optimization [J]. Applied Mathematical Modelling, 2018, 62 (10): 562-579.

[11] Meng Z, Li G, Yang D, Zhan L. A new directional stability transformation method of chaos control for first order reliability analysis [J]. Struct Multidisc Optim, 2017, 55 (2): 601-612.

[12] Meng Z, Pu Y, Zhou H. Adaptive stability transformation method of chaos control for first order reliability method [J]. Engineering with Computers, 2017, DOI: 10.1007/s00366-017-0566-2

[13] Meng Z, Zhou H, Li G, et al. A hybrid sequential approximate programming method for second-order reliability-based design optimization approach [J]. Acta Mechanica, 2017, 228(5): 1965-78.

[14] Meng Z, Zhou HL, Li G, et al. A decoupled approach for non-probabilistic reliability-based design optimization [J]. Computers & Structures, 2016, 175(10): 65-73.

[15] Meng Z, Li G, Wang B P, Hao P. A hybrid chaos control approach of the performance measure functions for reliability-based design optimization [J]. Computers & Structures, 2015, 146 (1): 32-43.[1]

参考资料